Routledge Handbook of Resilient Thermal Comfort

By Fergus Nicol, Hom Bahadur Rijal and Sue Roaf. Routledge, 2022, ISBN 9781032155975.

Ray Cole reviews this Handbook which captures a breadth of current knowledge on resilient thermal comfort.

The Routledge Handbook of Resilient Thermal Comfort is a compilation of works drawn from a wide range of climatic and cultural contexts and spanning a range of building types from yurts to houses, offices, schools, and nursing care homes. These contributions by 91 authors from 20 countries, along with insights drawn from the editors’ long-term involvement in the field, collectively represent an enormously impressive body of current thermal comfort research. Roaf and Nicol emphasize why the Handbook focusses on thermal comfort by arguing that the “temperatures people occupy in their living and working lives can have an enormous effect on their physical and mental health, well-being and, in turn, the productivity of individuals, societies, economies and entire political systems.” Moreover, they suggest that the “extent to which societies experience, avoid or inflict thermal stress on its people and workforce is an under-recognised measure of their overall humanity” (Roaf and Nicol, 2022).

The origin of the Handbook is interesting in and of itself. Roaf and Nicol had been central players in initiating and sustaining a series of 11 international conferences since 1994 that were held in Cumberland Lodge in the Great Park of Windsor Castle, UK. These “Windsor Conferences” uniquely positioned the comfort and health of building inhabitants as a primary responsibility of design professionals, offered a forum for the discussion and development of the science of thermal comfort and its impacts in terms of energy use in buildings, and provided a record of the changing understanding of what is meant by thermal comfort over the past two and a half decades. Moreover, they also positioned these developments within the “rapidly evolving context of building priorities” that evolved from the need to mitigate against climate change through to the “burgeoning challenges thrown at our societies by economic upheavals, ever more extreme weather events and trends” and, more recently, the impacts of the current global pandemic (Roaf, Fergus and Finlayson, 2020). 

The last planned gathering in the Windsor Conference series—Windsor 2020: Resilient Comfort—was not possible due to COVID-19 restrictions and the 81 papers were therefore only presented as published proceedings. Many of the 34 chapters in the Handbook of Resilient Thermal Comfort, evolved from some of these papers together with invited chapters authored by other leading researchers to address two “absolutely key questions in our rapidly heating world”—What is resilient comfort and what are resilient buildings? Presenting such a broad range of thermal comfort research in a single volume is not an easy task, particularly when many of the issues in the chapters overlap. Here, the chapters are organised in 10 “parts” covering topics such as those focussing on specific inhabitant groups: Part III:  Sleep and comfort for the old and young, specific building types; Part V: Resilience and comfort in offices, and the recent pandemic; Part IX: COVID: transmission and trust.

While the Handbook unquestionably represents an invaluable resource for researchers, students and others directly engaged in thermal comfort research, several chapters also offer broader reviews that provide a necessary historical context for those less familiar with the significant developments in comfort provisioning that unfolded over the past few decades. Readers therefore benefit from the accumulated knowledge and wisdom gained through the Windsor Conference series.

The thermal comfort conditions in buildings deemed desirable or acceptable have a history of reassessment as have the technologies by which they are achieved. The Handbook sets thermal comfort in an increasing “warming world” and the greater sense of urgency that has emerged to make the built environment more resilient to thermal stresses created by a changing climate. Here, the editors emphasise that “there are no magic solutions for building resilience, but every part of our built environment must be painstakingly rethought in preparation for the thermal onslaught ahead. If you think that the situation today is bad enough with heat domes, drought, fires and ice storms, wait till 2050” (Nicol, Rijal and Roaf, 2022). Of course, given the competing pressures on low-income households, in addition to difficulties in remaining cool during hot spells, many will also not be able to spend the amount needed to stay warm during the winter months and suffer discomfort and the risk of adverse health effects. Fuel poverty will no doubt be further exacerbated by the recent political tensions resulting from Russia’s invasion of Ukraine and ramifications on the cost of energy and global food supply. 

Unsurprisingly, mandated comfort standards, and the research that underpins them have been critical in shaping comfort provisioning in buildings. Of particular interest is the shift from laboratory-based studies to field-based studies, the supplanting of a steady, physics-based approach by adaptive thermal comfort models, and the demonstration of qualitative differences in the experience of thermal comfort across disparate cultures and climates, such as those in Brazil, Japan, and the UK. As evidenced in the Handbook, this unfolding story is far from complete, and thermal comfort research and standards will be reframed again as the world heats and lifestyles and working patterns change. Khattak, Wright and Natarajan (Chapter 24), for example, report on the rapid growing worldwide demand for mechanical cooling and argue that this, in part, is “determined by a dated and inflexible interpretation of current standards.” They examined a “flexible thermal comfort approach” where building zones are conditioned in “cycles of cooling followed by an upward temperature drift” resulted in both acceptable thermal comfort and significant energy savings. 

Thermal comfort “resilience” carries the implication that buildings lacking passive capabilities may be unable to remain habitable during extreme weather events and/or power outages caused by climate change. Indeed, Nicol (Chapter 1) argues that resilience is “about helping populations to survive in a heating world; it is about protecting people in the buildings where they live and work, against rising and unpredictable energy costs, ever more extreme weather events and infrastructural failures [emphasis added]” (Nicol, 2022). Building design professionals are likely aware of technical “resilience” and “adaptation” strategies to both prevent damage and to recover from damage created by increasing frequency and intensity of extreme disruptive events associated with climate change.  Importantly, however, the Handbook focusses on how buildings and their inhabitants can be more resilient. Here, Schweiker (Chapter 2) provides a “holistic view to human-building resilience” that includes human resilience and its influencing variable such as “toughness”, “ability to cope” and “capacity to recover” (Schweiker, 2022). Rather than solely a technical issue, the chapters in the Handbook collectively point to a different role that buildings must now serve beyond ensuring that their inhabitants are comfortable. Supporting their ability to make appropriate adaptations and changes to survive in many of them, even in extreme conditions, will likely gain prominence.

The Handbook advocates passive design strategies and those that facilitate behavioural adaptation, rather than the current dependence of thermal comfort provisioning by air-conditioning and other technologies that increase building operational energy and associated GHG emissions. This, of course, is not a new message but one that clearly requires being continually emphasised until building design professionals embrace climate-responsive approaches. Casting comfort provisioning within the increasing need for safe conditions in buildings during temperature extremes and power outages may help trigger change. Moreover, perhaps unsurprisingly, protecting the health of building inhabitants from the transmission of the COVID-19 virus is positioned alongside thermal comfort. Here, given that natural ventilation can reduce the infection rate, openable windows are strongly advocated. Thus, the confluence of effects of climate change being felt and the COVID-19 pandemic have provided further weight to the need for a greater deployment of passive strategies.

“Human agency” — the capacity of individuals to act independently and to make their own free choices — is presented as central to resilient comfort: the range of adaptive behaviours and opportunities for inhabitants to alter their own thermal conditions; and the extent of their ability to interact with building interfaces or to employ those adaptive opportunities available in buildings. Unlike automated control systems, building inhabitant’s agency enables them to manage risk and take advantage of opportunities. Indeed, drawing on a number of published studies, Heschong and Day (Chapter 3) concluded that “[w]e may need to rethink how we use technology and automation in buildings, using them more as tools to enrich the occupant experience, and enable occupant agency and control, rather than restricting and devaluing occupant interaction with the building” (Heschong and Day, 2022).

Given the wide range of authors, differences in language are to be expected. Various chapters in the Handbook, for example, use either “occupants” or “inhabitants” of buildings, with the former most common. However, the emphasis on agency would suggest that “inhabitants” more accurately captures the active participation and potential agency of building users with building systems than the term “occupant” used in conventional comfort research to portray a passive recipient of universalized comfort standards.

The comprehensive body of research that the editors have complied in the Handbook of Resilient Thermal Comfort collectively provides a wealth of constructive insights and lessons for the design of more resilient buildings. It justifies the importance of supporting greater inhabitant agency. Although these represent the central focus, this volume points to a much broader perspective on the roles and responsibilities of building design professionals and therefore provides them with a valuable resource.  As a handbook, they may selectively review those chapters of more direct relevance to their interests. The electronic version, and its attendant search capability, is particularly useful for this.

While the Handbook was published in 2022, the research in the constituent chapters would have obviously been conducted a year or more earlier and several new developments have unfolded subsequently. Although the global pandemic may be subsiding, the economic fall-out, the disruption of supply-chains, the changing nature of work and way that buildings are used, and the straining of social systems, present a different context in which to understand thermal comfort. Irrespective of how the future unfolds, the Handbook provides tangible evidence of coupling inhabitant behaviour and thermal comfort resilience with building capability and building resilience.

References

Heschong, L. and Day, J.K. (2022). Why occupants need a role in building operation: a framework for resilient design, IN: Nicol, F., Rijal, H.B., and Roaf, S. (Eds.) Routledge Handbook of Resilient Thermal Comfort, Routledge. 

Khattak, S.H., Wright, A. and Natarajan, S. (2022). Flexible future comfort, IN: Nicol, F., Rijal, H.B., and Roaf, S. (Eds.) Routledge Handbook of Resilient Thermal Comfort, Routledge.

Nicol, F. (2022). The shapes of thermal comfort and resilience, IN: Nicol, F., Rijal, H. B., and Roaf, S. (Eds.) Routledge Handbook of Resilient Thermal Comfort, Routledge.

Nicol, F., Rijal, H.B., and Roaf, S. (2022). Preface, IN: Nicol, F., Rijal, H. B., and Roaf, S. (Eds.) Routledge Handbook of Resilient Thermal Comfort, Routledge.

Roaf, S., Nicol, F. and Finlayson, W. (Eds). (2020). Windsor Conference 2020: Resilient Comfort Proceedings. ISBN 978-1-9161876-3-4. https://windsorconference.com/proceedings/ Windsor 2020

Roaf, S., and Nicol, F. (2022). Resilient comfort standards, p. 585, IN: Nicol, F., Rijal, H.B., and Roaf, S. (Eds.) Routledge Handbook of Resilient Thermal Comfort, Routledge.

Schweiker, M. (2022).. Rethinking resilient thermal comfort within the context of human-building resilience, 23-38, IN: Nicol, F., Rijal, H.B., and Roaf, S. (Eds.) Routledge Handbook of Resilient Thermal Comfort, Routledge.

Latest Peer-Reviewed Journal Content

Journal Content

Energy housekeeping: intersections of gender, domestic labour and technologies
R Martin

Speculation beyond technology: building scenarios through storytelling
R M Dowsett, M S Green & C F Harty

Professional judgement: an institutional logic approach to contractor tender pricing
D Jefferies & L Schweber

Emerging technologies’ impacts on ‘man caves’ and their energy demand
Y Strengers, K Dahlgren & L Nicholls

The gender of smart charging
S Pink

Fire performance and regulatory considerations with modern methods of construction
B J Meacham

Who cares? How care practices uphold the decentralised energy order
K Lucas-Healey, H Ransan- Cooper, H Temby & A W Russell

Alternatives to air-conditioning: policies, design, technologies, behaviours [editorial]
B Ford, D Mumovic & R Rawal

Benchmarking energy performance: indicators and models for Dutch housing associations
H S van der Bent, H J Visscher, A Meijer & N Mouter

Emissions from a net-zero building in India: life cycle assessment
M Jain & R Rawal

Lack of adaptability in Brazilian social housing: impacts on residents
S B Villa, P B Vasconcellos, K C R de Bortoli & L B de Araujo

Participation in domestic energy retrofit programmes: key spatio- temporal drivers
E Mohareb, A Gillich & D Bristow

Embodied carbon of concrete in buildings, Part 2: are the messages accurate?
A Moncaster, T Malmqvist, T Forman, F Pomponi & J Anderson

An alternative approach to delivering safe, sustainable surgical theatre environments
C A Short, A W Woods, L Drumright, R Zia & N Mingotti

Adapting owner-occupied dwellings in the UK: lessons for the future
T Hipwood

Integrating low energy cooling & ventilation strategies in Indian residences
M J Cook, Y Shukla, R Rawal, C Angelopoulos, L Caruggi-De-Faria, D Loveday, E Spentzou, & J Patel

Balconies as adaptable spaces in apartment housing
T Peters & S Masoudinejad

Inclusive Living: ageing, adaptations and future-proofing homes
V McCall

Residential geothermal air-conditioning: inhabitants’ comfort, behaviour and energy use
L Thomas, A Woods, R Powles, P Kalali, & S Wilkinson

Energy retrofit and passive cooling: overheating and air quality in primary schools
D Grassie, Y Schwartz, P Symonds, I Korolija, A Mavrogianni & D Mumovic

Outdoor PM2.5 air filtration: optimising indoor air quality and energy
E Belias & D Licina

Architects’ ‘enforced togetherness’: new design affordances of the home
E Marco, M Tahsiri, D Sinnett & S Oliveira

Overheating assessment in Passivhaus dwellings: the influence of prediction tools
V L Goncalves, V Costanzo, K Fabbri & T Rakha

The use of apartment balconies: context, design & social norms
M Smektała & M Baborska-Narożny

Sharing a home under lockdown in London
F Blanc & K Scanlon

Projected climate data for building design: barriers to use
P Rastogi, A Laxo, L Cecil &D Overbey

Residents’ views on adaptable housing: a virtual reality-based study
J Tarpio & S Huuhka

See all

Join Our Community

Latest Commentaries

Can Personal Carbon Allowances Help Cities Reach Their Climate Targets?

Many cities throughout the world have set carbon and / or energy targets including renewable energy production and emissions reduction goals. Despite the commitment to take action, cities do not directly control the majority of the uses of energy or consumption-related sources of carbon emissions within their boundaries. Could a focus on household energy use, personal travel and consumption of material goods help to achieve this transition at city level? Tina Fawcett (University of Oxford), Kerry Constabile (University of Oxford) and Yael Parag (Reichman University) consider whether and how cities could harness personal carbon allowances in a practical manner.

Lessons from the Swiss Impulse Programme

The former Swiss 'Impulse programme' was a successful response to the 1970s energy crisis. It provides important lessons for today’s climate emergency about what governments, industry and academia can do to create a successful transition within the construction industry. Niklaus Kohler and Kurt Meier (both former members of the Construction and Energy Impulse programmes) reflect on key lessons for today about its implementation and how to sustain change over the short and long term.