www.buildingsandcities.org/insights/news/mass-retrofit.html

Making Mass Retrofit a Reality

Making Mass Retrofit a Reality

A webinar from CREDS and Buildings & Cities

There is a large gulf between current slow retrofitting rates and the portion of domestic buildings that rapidly need intervention to meet climate targets. This webinar reflects on key findings from a recent Buildings & Cities special issue which begins to address the gap by focusing on delivering retrofit at scale. Co-hosted with the Centre for Research into Energy Demand Solutions (CREDS). Registration: https://bit.ly/3DCrfrJ

Key questions

  1. What policy initiatives can create the right conditions (energy service models, business retrofit models and consumer demand) to encourage mass retrofit? 
  2. What coordination between actors (central or local government, private sector companies, professional organisations) is needed to enable mass retrofit?
  3. What specific capabilities and capacities need to be created in construction supply chains? How can these be supported?

Agenda

Welcome Nick Eyre, Director of CREDS & University of Oxford
Introduction to the Special Issue, Faye Wade, University of Edinburgh

Part 1: Policy & governance for retrofitting

Retrofitting at scale: comparing transition experiments in Scotland and the Netherlands, Petra Hofman, Tilburg University, NL & Faye Wade, University of Edinburgh, UK
Housing retrofit: six types of local authority energy service models, Jan Webb MBE, University of Edinburgh, UK
Discussant: Erwin Mlecnik, TU Delft, NL

Part 2: Developing supply chain capacity

Domestic retrofit supply chain initiatives and business innovations: an international review, Joanne Wade OBE, The Association for Decentralised Energy and Chair of the Advisory Board for CREDS, UK
Domestic retrofit: understanding capabilities of micro-enterprise building practitioners, Kate Simpson, Imperial College London, UK
Discussant: Veronika Schröpfer, Architects' Council of Europe, BE

Part 3: Respondents

Lord Deben, Chair, Climate Change Committee, UK
Stefan Moser, European Commission, DG ENERGY, Head of Unit: Buildings and Products (ENER.B.3)

Part 4: Q&A

Chaired by Richard Lorch, Editor in Chief, Buildings & Cities


Background

Domestic buildings account for 24% of global anthropogenic greenhouse gas emissions (Lucon et al., 2014), and the vast majority of existing buildings are likely to still be in use in 2050. Consequently, retrofitting domestic buildings is essential for meeting targets to mitigate the catastrophic impacts of our changing climate. Retrofitting includes a combination of improving the building fabric to reduce the need for heating and cooling, and changing building services (heating, cooling, ventilation, hot water, electricity) to carbon free systems.The International Energy Agency (IEA) have indicated that one in five buildings worldwide need to be retrofitted to be zero carbon ready by 2030 (IEA, 2021). However, current rates of retrofitting are far lower than necessary for achieving global net zero climate targets. For example, across the EU, deep retrofits that reduce energy consumption by at least 60% are carried out in only 0.2% of the building stock per year and in some regions, energy retrofitting is virtually absent (EC, 2020).

Successful retrofitting will only be achieved through aligning political, economic, social and technical systems. Policy and governance, in particular, can provide appropriate conditions for mass retrofit. Central governments have the capacity to create and implement targets, tools and financial support, but retrofitting schemes customised to local circumstances can be more successful than nation-wide strategies (Gillich, et al., 2018). However, there is uncertainty around the capacity of local schemes to be scaled up. Additionally, successful energy retrofitting will require a 'house as a system' approach (Stanislas et al., 2011), which recognises the building envelope as a single thermal unit (Clarke et al., 2017). The Repair, Maintenance and Improvement (RMI) sector currently undertakes the majority of domestic renovation work (e.g. extensions, kitchen and bathroom refurbishments), and would be well positioned to contribute to scaling energy retrofitting. However, the sector is currently characterised by fragmentation and skill sets restricted according to discipline or technology. There are still unanswered questions around how such actors can be supported to develop supply chains for retrofitting at scale.


References

Clarke, L., Gleeson, C., & Winch, C. (2017). What kind of expertise is needed for low energy construction? Construction Management and Economics, 35(3), 78-89. https://doi.org/10.1080/01446193.2016.1248988

EC, (2020). A renovation wave of Europe, Greening our buildings, creating jobs, improving lives. European Commission. Available at: https://ec.europa.eu/energy/topics/energy-efficiency/energy-efficient-buildings/renovation-wave_en

Gillich, A., Sunikka-Blank, M., & Ford, A. (2018). Designing an 'optimal' domestic retrofit programme. Building Research and Information, 46(7), 767-778. https://doi.org/10.1080/09613218.2017.1368235

IEA, (2021). Net zero by 2050 hinges on a global push to increase energy efficiency. International Energy Agency. Published: 10 June 2021. Available at: https://www.iea.org/articles/net-zero-by-2050-hinges-on-a-global-push-to-increase-energy-efficiency

Lucon O., D. Ürge-Vorsatz, A. Zain Ahmed, H. Akbari, P. Bertoldi, L. F. Cabeza, N. Eyre, A. Gadgil, L. D. D. Harvey, Y. Jiang, E. Liphoto, S. Mirasgedis, S. Murakami, J. Parikh, C. Pyke, and M. V. Vilariño, (2014). Buildings. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

Stanislas, N., Janda, K. B., & Killip, G. (2011). Building expertise: A system of professions approach to low-carbon refurbishment in the UK and France.  Proceedings of ECEEE 2011 Summer Study - Belambra Presquile de Giens, France

Latest Peer-Reviewed Journal Content

Journal Content

Analysing cold-climate urban heat islands using personal weather station data
J Taylor, C H Simpson, J Vanhatalo, H Sohail, O Brousse, & C Heaviside

Are simple models for natural ventilation suitable for shelter design?
A Conzatti, D Fosas de Pando, B Chater & D Coley

Impact of roofing materials on school temperatures in tropical Africa
E F Amankwaa, B M Roberts, P Mensah & K V Gough

Acceptability of sufficiency consumption policies by Finnish households
E Nuorivaara & S Ahvenharju

Key factors for revitalising heritage buildings through adaptive reuse
É Savoie, J P Sapinski & A-M Laroche

Cooler streets for a cycleable city: assessing policy alignment
C Tang & J Bush

Understanding the embodied carbon credentials of modern methods of construction
R O'Hegarty, A McCarthy, J O'Hagan, T Thanapornpakornsin, S Raffoul & O Kinnane

The changing typology of urban apartment buildings in Aurinkolahti
S Meriläinen & A Tervo

Embodied climate impacts in urban development: a neighbourhood case study
S Sjökvist, N Francart, M Balouktsi & H Birgisdottir

Environmental effects of urban wind energy harvesting: a review
I Tsionas, M laguno-Munitxa & A Stephan

Office environment and employee differences by company health management certification
S Arata, M Sugiuchi, T Ikaga, Y Shiraishi, T Hayashi, S Ando & S Kawakubo

Spatiotemporal evaluation of embodied carbon in urban residential development
I Talvitie, A Amiri & S Junnila

Energy sufficiency in buildings and cities: current research, future directions [editorial]
M Sahakian, T Fawcett & S Darby

Sufficiency, consumption patterns and limits: a survey of French households
J Bouillet & C Grandclément

Health inequalities and indoor environments: research challenges and priorities [editorial]
M Ucci & A Mavrogianni

Operationalising energy sufficiency for low-carbon built environments in urbanising India
A B Lall & G Sethi

Promoting practices of sufficiency: reprogramming resource-intensive material arrangements
T H Christensen, L K Aagaard, A K Juvik, C Samson & K Gram-Hanssen

Structural barriers to sufficiency: the contribution of research on elites
M Koch, K Emilsson, J Lee & H Johansson

Disrupting the imaginaries of urban action to deliver just adaptation [editorial]
V Castán-Broto, M Olazabal & G Ziervogel

Nature for resilience reconfigured: global- to-local translation of frames in Africa
K Rochell, H Bulkeley & H Runhaar

How hegemonic discourses of sustainability influence urban climate action
V Castán Broto, L Westman & P Huang

Fabric first: is it still the right approach?
N Eyre, T Fawcett, M Topouzi, G Killip, T Oreszczyn, K Jenkinson & J Rosenow

Social value of the built environment [editorial]
F Samuel & K Watson

Understanding demolition [editorial]
S Huuhka

Data politics in the built environment [editorial]
A Karvonen & T Hargreaves


See all

Latest Commentaries

A session from a participatory drawing workshop at the Rumi Library, led by Sadia Sharmin in 2019

While Living Labs are often framed as structured, institutionalised spaces for innovation, Sadia Sharmin (Habitat Forum Berlin) reinterprets the concept through the lens of grassroots urban practices. She argues that self-organised knowledge spaces can function as Living Labs by fostering situated learning, collective agency, and community resilience. The example of a Living Lab in Bangladesh provides a model pathway to civic participation and spatial justice.

Climate Mitigation & Carbon Budgets: Research Challenges

Thomas Lützkendorf (Karlsruhe Institute of Technology) explains how the research community has helped to change the climate change policy landscape for the construction and real estate sectors, particularly for mitigating GHG emissions. Evidence can be used to influence policy pathways and carbon budgets, and to develop detailed carbon strategies and implementation. A key challenge is to create a stronger connection between the requirements for individual buildings and the national reduction pathways for the built environment.

Join Our Community