Systemic inequalities in indoor air pollution exposure

Systemic inequalities in indoor air pollution exposure

Exposure to air pollution is one of the greatest health risks in many countries, for example causing an estimated 28,000 – 36,000 premature deaths a year in the UK. Low-income households are exposed to higher levels of outdoor and indoor air pollution.  What leads to these indoor exposure inequalities and what can be done to reduce them?

New peer reviewed research by Ferguson et al. in "Systemic inequalities in indoor air pollution exposure in London, UK" collects evidence from various models, datasets, and previously published studies to show why low-income households may be exposed to higher levels of indoor air pollution in London. It then links these factors together to demonstrate how these exposure disparities are in part due to housing and environmental factors that are outside of the control of the occupants themselves, and are therefore an area of systemic inequality.

Most studies that examine inequalities in air pollution exposure rely on outdoor air pollution concentrations, and in many UK cities, evidence shows that outdoor air pollution is highest in more deprived neighbourhoods. However, in the UK as with other developed countries, people spend around 80-90% of their time indoors, meaning indoor air pollution is likely to be more important when looking at overall exposure. Emerging evidence suggests that low-income populations in developed countries also experience higher concentrations of air pollution in the indoor environment (Ferguson et al. 2021). To understand why low-income households may be exposed to higher levels of indoor air pollution – and more at-risk from this exposure - the authors collected evidence from various models, datasets and previously published studies using London as a case study. Factors which influence exposure are related to the surrounding environment, housing quality, and occupant behaviours.

Levels of outdoor air pollution can be impacted by the number of local sources, such as road transport, and pollution can enter into houses through cracks, vents, opened windows or ventilation systems. This paper supports previous research by showing how low-income households tend to live in areas with higher levels of outdoor air pollution, as well as providing new evidence of how low-income neighbourhoods tend to be closer to busy roads.  The paper shows that, whilst low-income housing is on average more airtight than the rest of the building stock, indoor concentrations of air pollution from outdoor sources are still higher in low-income households due to higher outdoor levels.  

Another important factor is housing quality. While the greater airtightness seen in low-income housing can help reduce the amount of outdoor air pollution that reaches the indoor environment, it can also limit the ability to remove pollution from indoor sources, for example air pollution generated by activities such as cooking or smoking. This means it is particularly important to have additional ventilation options, such as extract fans, but evidence indicates that low-income households are much more likely to have broken extract fans. In addition, such individuals are more likely to live in dwellings with shared walls and floors, increasing the chances of pollution entering from neighbouring dwellings, and are more likely to live in smaller dwellings that can accumulate air pollution from indoor sources faster.

A third important factor is the behaviour of occupants. Evidence collected in this paper shows how low-income households are more likely to smoke indoors, tend to spend more time cooking, and may be less likely to open windows to ventilate due to security concerns. Dwellings are more likely to be overcrowded, with more people creating pollution indoors. And, low-income individuals are also more likely to spend time at home, increasing the relative importance of indoor air pollution for such groups.

Finally, low-income populations have higher underlying rates of disease than the rest of the population, which may act to make them more susceptible to negative health effects due to these exposures. Acting together as a system, these factors can increase indoor air pollution concentrations and the amount of time spent exposed to them, for a sub-group of the population already vulnerable to poor health outcomes. Exposure to indoor air pollution is therefore considered an area of systemic inequality. The negative consequences may reinforce themselves – for example, as exposure to air pollution makes an individual sicker, they may need to spend longer at home, further increasing the role of indoor air pollution on health. And, many of these factors, such as the surrounding environment, neighbours, and housing quality are outside of the control of a population sub-group that largely rents their homes from landlords or housing providers, and do not have the financial resources to move elsewhere or political power to demand change.

Therefore, any measures to address indoor air pollution inequalities need to address these systemic issues if they hope to succeed. Rather than focusing on behaviours and health outcomes, policies that improve low-income housing and the surrounding environment are going to be critical to address health inequalities from air pollution in the future.

Reference

Ferguson, L., Taylor, J., Zhou, K., Shrubsole, C., Symonds, P., Davies, M., Dimitroulopoulou, S. (2021). Systemic inequalities in indoor air pollution exposure in London, UK. Buildings and Cities, 2(1), 411-434.  https://doi.org/10.5334/bc.100


Funding

The research was funded by the Engineering and Physical Sciences Research Council (UK) Centre for Doctoral Training in Energy Demand and the Public Health England PhD Studentship Fund. Additional support is from the Wellcome Trust for the ‘Complex Urban Systems for Sustainability and Health’ (CUSSH) project.


Latest Peer-Reviewed Journal Content

Journal Content

Suburban climate adaptation governance: assumptions and imaginaries affecting peripheral municipalities
L Cerrada Morato

Urban shrinkage as a catalyst for transformative adaptation
L Mabon, M Sato & N Mabon

Maintaining a city against nature: climate adaptation in Beira
J Schubert

Ventilation regulations and occupant practices: undetectable pollution and invisible extraction
J Few, M Shipworth & C Elwell

Nature for resilience reconfigured: global- to-local translation of frames in Africa
K Rochell, H Bulkeley & H Runhaar

How hegemonic discourses of sustainability influence urban climate action
V Castán Broto, L Westman & P Huang

Fabric first: is it still the right approach?
N Eyre, T Fawcett, M Topouzi, G Killip, T Oreszczyn, K Jenkinson & J Rosenow

Gender and the heat pump transition
J Crawley, F Wade & M de Wilde

Social value of the built environment [editorial]
F Samuel & K Watson

Understanding demolition [editorial]
S Huuhka

Data politics in the built environment [editorial]
A Karvonen & T Hargreaves

European building passports: developments, challenges and future roles
M Buchholz & T Lützkendorf

Decision-support for selecting demolition waste management strategies
M van den Berg, L Hulsbeek & H Voordijk

Assessing social value in housing design: contributions of the capability approach
J-C Dissart & L Ricaurte

Electricity consumption in commercial buildings during Covid-19
G P Duggan, P Bauleo, M Authier, P A Aloise-Young, J Care & D Zimmerle

Disruptive data: historicising the platformisation of Dublin’s taxi industry
J White & S Larsson

Impact of 2050 tree shading strategies on building cooling demands
A Czekajlo, J Alva, J Szeto, C Girling & R Kellett

Social values and social infrastructures: a multi-perspective approach to place
A Legeby & C Pech

Resilience of racialized segregation is an ecological factor: Baltimore case study
S T A Pickett, J M Grove, C G Boone & G L Buckley

See all

Latest Commentaries

Amazon Prime trailers lined up outside an Amazon Fulfillment Centre in Baltimore, US. Image: © Google Maps 2023. Data from AirbusData SIO, NOAA, U.S. Navy, NGA, GEBCO.

Dillon Mahmoudi (University of Maryland, Baltimore County) and Alan Wiig (University of Florida) comment on the contributions of the Buildings & Cities special issue Data Politics in the Built Environment. This commentary considers how tech corporates such as Amazon are changing urban life and creating new forms of automated surveillance.

Phronesis and Epistemic Justice in Data-Driven Built Environments

Miguel Valdez (Open University) comments on the contributions of the Buildings & Cities special issue Data Politics in the Built Environment. This commentary considers an additional perspective and provides an additional foundation to support more progressive data politics in the built environment. The three Aristotelian virtues of ‘techne’, ‘episteme’ and ‘phronesis’ and epistemic justice provide suitable lenses to critique smart city politics.

Join Our Community