www.buildingsandcities.org/insights/commentaries/cop26-elephant.html
By Mark Levine (Senior Advisor, Lawrence Berkeley National Laboratory, US)
As the economies and cities in developing countries grow, they will represent the total global increase in GHG emissions through the end of this century. These countries currently have the least capability to limit GHG emissions. In addition to ensuring radical GHG emission reductions in developed countries, COP26 must also now provide a range of significant assistance to developing countries to create local capabilities to reduce emissions. A broad outline is presented of what this entails.
The Intergovernmental Panel on Climate Change (IPCC) has expressed its view that "acceptable" levels of impact are compatible with a warming of only 1.5 to 2˚C; we are already 60% of the way to 1.5 ˚C temperature increase. Achieving a temperature increase of only 2˚C will be extraordinarily challenging, requiring a global drop in greenhouse gas (GHG) emissions by 50% in 2050 and to zero by 2100. There are regions of the world that have the potential and may also have the political wherewithal to limit their emissions to be compatible with a 2˚C warming. These include Western Europe, China, Japan, the "Four Tigers" of S.E. Asia, and several countries in South America. India and the United States have the potential to follow a 2˚C path but face severe political barriers (very different in each country). Together, these countries represent less than 50% of current GHG emissions.
This leaves countries representing more than half the world's population, mostly developing countries, as major outliers. As their economies and cities grow, these countries will represent the total global increase in GHG emissions through the end of this century, as they have during the past three decades (see Figure 1). These countries have the least capability to limit GHG emissions.
It is imperative that there be developed plans and actions to enable developing countries to reduce emissions. As their cities are rapidly expanding, there is an opportunity now to create low-energy and zero-carbon infrastructure and buildings. Such plans need to include the following elements:
To carry this out, it will be necessary to:
A recent report of the Green Climate Fund (Hourcade et al., 2021, p. 12) notes the"
"misalignment [of investment] is compounded by the limited capital flows from high-savings to low-savings regions (mostly developing countries). . . .With an estimated $14 trillion of negative-yielding debt in OECD countries and $26 trillion of low carbon climate-resilient investment opportunities in developing countries by 2030. [C]apital seeking higher results should flow from developed countries to developing countries to address this gap. This is not happening. Three-quarters of global climate is deployed in the country in which it is sourced, revealing a strong preference for home-country investments where risks are well understood. This explains why sub-Saharan Africa accounts for only 5% of climate-related financial flows in non-OECD countries."
The redirection of investment flows and associated soft investments are urgently needed. It would be desirable for the leadership of the next (planning) step to be shared by the United States and China, working collaboratively. (China and the U.S. together account for a large portion of global emissions; they worked very effectively together to enable the agreement at the Paris meeting in 2015.) This call to action is both essential and long overdue. Addressing the issues of developing countries needs to be at the forefront of topics to be discussed in Conference of the Parties (COP) to be held starting at the end of October in Glasgow.
Hourcade, J.C; Glemarec, Y; de Coninck, H; Bayat-Renoux, F.; Ramakrishna, K., Revi, A. (2021). Scaling up climate finance in the context of Covid-19 - Executive Summary. South Korea: Green Climate Fund.
Analysing cold-climate urban heat islands using personal weather station data
J Taylor, C H Simpson, J Vanhatalo, H Sohail, O Brousse, & C Heaviside
Are simple models for natural ventilation suitable for shelter design?
A Conzatti, D Fosas de Pando, B Chater & D Coley
Impact of roofing materials on school temperatures in tropical Africa
E F Amankwaa, B M Roberts, P Mensah & K V Gough
Acceptability of sufficiency consumption policies by Finnish households
E Nuorivaara & S Ahvenharju
Key factors for revitalising heritage buildings through adaptive reuse
É Savoie, J P Sapinski & A-M Laroche
Cooler streets for a cycleable city: assessing policy alignment
C Tang & J Bush
Understanding the embodied carbon credentials of modern methods of construction
R O'Hegarty, A McCarthy, J O'Hagan, T Thanapornpakornsin, S Raffoul & O Kinnane
The changing typology of urban apartment buildings in Aurinkolahti
S Meriläinen & A Tervo
Embodied climate impacts in urban development: a neighbourhood case study
S Sjökvist, N Francart, M Balouktsi & H Birgisdottir
Environmental effects of urban wind energy harvesting: a review
I Tsionas, M laguno-Munitxa & A Stephan
Office environment and employee differences by company health management certification
S Arata, M Sugiuchi, T Ikaga, Y Shiraishi, T Hayashi, S Ando & S Kawakubo
Spatiotemporal evaluation of embodied carbon in urban residential development
I Talvitie, A Amiri & S Junnila
Energy sufficiency in buildings and cities: current research, future directions [editorial]
M Sahakian, T Fawcett & S Darby
Sufficiency, consumption patterns and limits: a survey of French households
J Bouillet & C Grandclément
Health inequalities and indoor environments: research challenges and priorities [editorial]
M Ucci & A Mavrogianni
Operationalising energy sufficiency for low-carbon built environments in urbanising India
A B Lall & G Sethi
Promoting practices of sufficiency: reprogramming resource-intensive material arrangements
T H Christensen, L K Aagaard, A K Juvik, C Samson & K Gram-Hanssen
Structural barriers to sufficiency: the contribution of research on elites
M Koch, K Emilsson, J Lee & H Johansson
Disrupting the imaginaries of urban action to deliver just adaptation [editorial]
V Castán-Broto, M Olazabal & G Ziervogel
Nature for resilience reconfigured: global- to-local translation of frames in Africa
K Rochell, H Bulkeley & H Runhaar
How hegemonic discourses of sustainability influence urban climate action
V Castán Broto, L Westman & P Huang
Fabric first: is it still the right approach?
N Eyre, T Fawcett, M Topouzi, G Killip, T Oreszczyn, K Jenkinson & J Rosenow
Social value of the built environment [editorial]
F Samuel & K Watson
Understanding demolition [editorial]
S Huuhka
Data politics in the built environment [editorial]
A Karvonen & T Hargreaves
Latest Commentaries
Self-Organised Knowledge Space as a Living Lab
While Living Labs are often framed as structured, institutionalised spaces for innovation, Sadia Sharmin (Habitat Forum Berlin) reinterprets the concept through the lens of grassroots urban practices. She argues that self-organised knowledge spaces can function as Living Labs by fostering situated learning, collective agency, and community resilience. The example of a Living Lab in Bangladesh provides a model pathway to civic participation and spatial justice.
Climate Mitigation & Carbon Budgets: Research Challenges
Thomas Lützkendorf (Karlsruhe Institute of Technology) explains how the research community has helped to change the climate change policy landscape for the construction and real estate sectors, particularly for mitigating GHG emissions. Evidence can be used to influence policy pathways and carbon budgets, and to develop detailed carbon strategies and implementation. A key challenge is to create a stronger connection between the requirements for individual buildings and the national reduction pathways for the built environment.