New Approaches to Building Regulations Needed

New Approaches to Building Regulations Needed

By Fionn Stevenson (University of Sheffield, UK)

COP-26 represents a significant opportunity for countries to make detailed commitments for their GHG emissions reductions and to rethink how buildings are regulated. Governments have a central role to ensure that widespread and consistent change occurs within the construction and real estate supply chains by introducing new regulatory measures to ensure that buildings meet their performance targets.

COP-26 carbon reporting goals

The COP-26 Presidential Programme uniquely includes a day on ‘Cities, Regions and the Built Environment’ recognising that the built environment is globally responsible for around 40% of anthropogenic CO2 emissions including embodied carbon (GABC et al., 2019). The UK government, as the COP-26 host organization, promises that it “…will make climate-related disclosures mandatory across the economy by 2025, with most requirements coming in by 2023” (UNCCC, 2021: 11) while stating the wider ambitions for COP-26 to“… resolve the issues around transparent reporting to build confidence in the system and support all countries to meet their commitments.” (UNCCC, 2021: 26). This will apparently be achieved by agreeing a suitable ‘Paris Rulebook’ of enforceable policies, despite the deadly ‘organised hypocrisy’ currently enabling government agreements and statements not to match their actions (Monthly Review, 2021).

UK regulatory response

In line with this organized hypocrisy, there are currently no plans to require actual carbon emissions reporting against targets in the new UK building regulations, just the usual inaccurate modelling of these. This is despite strong lobbying by various professional and industry organisations for regulatory assessment and reporting of whole life carbon emissions (Arnold et al., 2021). The UK Climate Change Committee, as a government advisory body, have also demanded more rigorous building performance verification in use, but their call also remains unanswered. Can we turn to other national governments to find a lead here?

International regulations and standards

Despite the European Commission (2021) having produced a common language for assessing and reporting on the sustainability performance of buildings via its ‘Level(s) framework’, it would seem there is still some way to go to establish effective common standards (Kuittinen and Hakkinen, 2020), ahead of any improved regulatory process, particularly for retrofit projects  (Fawcett and Topouzi, 2020). At the same time, although numerous countries have now set carbon budgets for the construction sector (Kuittinen and Hakkinen, 2020), with concomitant building energy certificates for public buildings with floor areas over 1000 m2 (Cohen and Bordass, 2015), these are yet to translate into appropriate regulation supported by effective absolute carbon metrics with clear targets to enforce such budgets.  

Harmonising regulations with other measures

As van der Heijden (2016) points out, voluntary, market and fiscal measures to incentivise zero carbon buildings from the bottom up can be compelling accomplices to mandatory building regulations, and particularly at points in the building cycle where capital can be released for upgrading the building stock, e.g. reducing building taxes at the point of sale, when either the sellers or the buyers improve the home being sold. Building performance guarantees, as promoted through the Energiesprong initiative, effectively by-pass the need for regulatory compliance. This is achieved contractually by ensuring that the supply side (typically, the contractor) guarantees energy and thermal performance and must correct matters when their buildings don’t perform to target. Finally, the National Australian Built Environment Rating System (NABERS) usefully distinguishes between the performance of the building itself and the use of energy by the tenants as another way forward (Cohen and Bordass, 2015). A crucial factor here is having strong intermediaries to promote these new business models to all stakeholders (Brown et al., 2019) and ensuring they harmonise with each other and existing regulations. This harmonisation is not on the radar just now.

What is needed from COP-26?

The current COP-26 programme aims to make governments commit to a detailed approach to addressing the climate emergency, but it still relies on a ‘business as usual’ market-based model which allows governments to choose minimal intervention by using maximum leverage through other actors (Arsel and Buscher, 2012). However, simply encouraging the free market to ‘voluntarily’ deal with environmental issues related to the construction industry is never enough (Özler and Obach, 2009) and does not deal with those lobbying against regulation for their own profit at the expense of other people and the planet (Hepburn, 2010). COP-26 needs to urge national governments to:

  • Carbon metrics: agree with industry an internationally defined set of carbon metrics for reporting
  • Delivery: harmonise new and existing instruments for delivering zero carbon buildings
  • Whole life emissions: immediately introduce a regulatory requirement for the transparent reporting of absolute and actual whole life carbon emissions for all buildings against government set targets and based on actual consumption of resources and energy
  • Performance guarantees: quickly make voluntary building rating systems and performance guarantees mandatory, especially for new and retrofitted housing
  • Retrofit: introduce mandatory upgrading of all buildings to nearly zero carbon at point of sale to reduce emissions, utilizing fiscal incentives, with minimal exceptions.
  • Enforcement: create random building performance inspections via a new generation of trained building inspectors, rather than leaving it to the construction industry to self-police their own whole life carbon emissions performance among other factors.

These measures are needed to dismantle the organized hypocrisy that currently exists between governments and construction industries in terms of ensuring building performance in name only. Nothing less will do to address the situation we face right now.


Arnold, W., den Dekker, T., Giesekam. J., Godefroy, J. & Sturgis, S. (2021). A proposed amendment to the Building Regulations 2010: whole life carbon (part Z).

Arsel, M. & Büscher, B. (2012). Nature™ Inc.: Changes and Continuities in Neoliberal Conservation and Market-based Environmental Policy. Development and change, 43(1), 53-78.

Brown, D., Kivimaa, P. & Sorrell, S. (2019). An energy leap? Business model innovation and intermediation in the ‘Energiesprong’ retrofit initiative. Energy Research & Social Science, 58, 101253.

Cohen, R. & Bordass, B. (2015). Mandating transparency about building energy performance in use. Building Research & Information, 43(4), 534-55.

European Commission. (2021). Level(s): European framework for sustainable buildings.

Fawcett, T. & Topouzi, M. (2020). Residential retrofit in the climate emergency: the role of metrics. Buildings and Cities, 1(1), 475-490.

GABC, IEA & UNEP. (2019). 2019 Global status report for buildings and construction: towards a zero-emission, efficient and resilient buildings and construction sector.

Hepburn, C. (2010). Environmental policy, government, and the market. Oxford Review of Economic Policy, 26(2), 117-136.

Kuittinen, M., & Häkkinen, T. (2020). Reduced carbon footprints of buildings: new Finnish standards and assessments. Buildings and Cities, 1(1), 182–197.

Özler, Ş.İ. & Obach, B. K.(2009). Capitalism, state economic policy and ecological footprint: an international comparative analysis. Global Environmental Politics, 9 (1), 79-108.

Monthly Review. (2021). Leaked report of the IPCC reveals that the growth model of capitalism is unsustainable.

UNCCC. (2021). COP26 Explained. UN Climate Change Conference

van der Heijden, J. (2016). The new governance for low-carbon buildings: mapping, exploring, interrogating. Building Research & Information, 44(5-6), 575-584.

Latest Peer-Reviewed Journal Content

Journal Content

An alternative approach to delivering safe, sustainable surgical theatre environments
C A Short, A W Woods, L Drumright, R Zia & N Mingotti

Adapting owner-occupied dwellings in the UK: lessons for the future
T Hipwood

Integrating low energy cooling & ventilation strategies in Indian residences
M J Cook, Y Shukla, R Rawal, C Angelopoulos, L Caruggi-De-Faria, D Loveday, E Spentzou, & J Patel

Balconies as adaptable spaces in apartment housing
T Peters & S Masoudinejad

Inclusive Living: ageing, adaptations and future-proofing homes
V McCall

Residential geothermal air-conditioning: inhabitants’ comfort, behaviour and energy use
L Thomas, A Woods, R Powles, P Kalali, & S Wilkinson

Energy retrofit and passive cooling: overheating and air quality in primary schools
D Grassie, Y Schwartz, P Symonds, I Korolija, A Mavrogianni & D Mumovic

Outdoor PM2.5 air filtration: optimising indoor air quality and energy
E Belias & D Licina

Architects’ ‘enforced togetherness’: new design affordances of the home
E Marco, M Tahsiri, D Sinnett & S Oliveira

Overheating assessment in Passivhaus dwellings: the influence of prediction tools
V L Goncalves, V Costanzo, K Fabbri & T Rakha

The use of apartment balconies: context, design & social norms
M Smektała & M Baborska-Narożny

Sharing a home under lockdown in London
F Blanc & K Scanlon

Projected climate data for building design: barriers to use
P Rastogi, A Laxo, L Cecil &D Overbey

Residents’ views on adaptable housing: a virtual reality-based study
J Tarpio & S Huuhka

Technological transitions in climate control: lessons from the House of Lords
Henrik Schoenefeldt

Internal thermal mass for passive cooling and ventilation: adaptive comfort limits, ideal quantities, embodied carbon
T de Toldi, S Craig & L Sushama

Understanding air-conditioned lives: qualitative insights from Doha
Russell Hitchings

Living with air-conditioning: experiences in Dubai, Chongqing & London
N Murtagh, S Badi, Y Shi, S Wei, W Yu

Air-conditioning in New Zealand: power and policy
H Byrd, S Matthewman & E Rasheed

Summertime overheating in UK homes: is there a safe haven?
P Drury, S Watson & K J Lomas

Survey study on energy use in UK homes during Covid-19
G M Huebner, N E Watson, K Direk, E McKenna, E Webborn, F Hollick, S Elam & T Oreszczyn

Ceiling-fan-integrated air-conditioning: thermal comfort evaluations
M Luo, H Zhang, Z Wang, E Arens, W Chen, F S Bauman & P Raftery

The future of IEQ in green building certifications
D Licina, P Wargocki, C Pyke & S Altomonte

Architectural form: flexibility, subdivision and diversity in Manhattan loft buildings
C S Kayatekin

The significance of urban systems on sustainability and public health [editorial]
J Taylor & P Howden-Chapman

Empowered by planning law: unintended outcomes in the Helsinki region
A Joutsiniemi, M Vaattovaara & J Airaksinen

Climate change projections for sustainable and healthy cities
C Goodess, S Berk, S B Ratna, O Brousse, M Davies, C Heaviside, G Moore & H Pineo

Retrofit at scale: accelerating capabilities for domestic building stocks [editorial]
F Wade & H J Visscher

See all

Join Our Community

Latest Commentaries

Publishing Books: Some Advice and Warnings

Philip Steadman (University College London) has authored a dozen books over 50 years. Reflecting on his own experiences, he offers some advice to new authors planning to publish books about architecture and building.

Christopher Alexander and 'Notes on the Synthesis of Form'

Philip Steadman (University College London) revisits and critiques this influential book by Christopher Alexander (1936-2022). Its method relies in part on the mathematics of set and graph theory, together with a computer technique for analysing complex systems and dividing them into their component sub-systems.