COP-26: Stopping Climate Change and Other Illusions

Measured atmospheric CO2 at Mauna Loa Observatory.  Note: red = the monthly mean values; black = the same, after correction for the average seasonal cycle.
Measured atmospheric CO2 at Mauna Loa Observatory. Note: red = the monthly mean values; black = the same, after correction for the average seasonal cycle.

By William E. Rees (Professor Emeritus, University of British Columbia, CA)

Do not expect significant progress from COP-26 on climate change mitigation.  There are fundamental barriers that prevent the deep and rapid changes that scientists advocate.  Most countries adhere to economic growth policies - which create ecological overshoot.  Unless and until we accept that we must live within ecological limits, then climate change will not be adequately tackled. Energy and resource consumption must be addressed through controlled economic contraction.

The world in 2021 was buffeted by an unprecedented barrage of extreme weather events. This is the leading edge of the climate catastrophe that lies ahead should world governments remain fixed on our present global ‘development’ trajectory. 

The good news is that the recent uptick in violent weather has increased pressure on participants in COP-26 finally to implement the kind of determined measures that will dramatically lower GHG emissions and put global heating on hold; the bad news is that whatever is agreed to at COP-26 is unlikely to make any positive difference.

There have been 25 COP meetings on climate change since 1995 and several international agreements to reduce carbon emissions, including the ‘legally binding’ 1997 Kyoto Protocol and the Paris Agreement of 2015. Nevertheless, atmospheric GHG concentrations have  increased unabated during this entire 25 year period — CO2, the principal anthropogenic GHG, has ballooned exponentially from ~360ppm in 1995 to almost 420 ppm in 2020 — and mean global temperature has risen by ~1 oC.  History suggests that what should emerge from COP26 cannot emerge from COP26.

There are two fundamental barriers. First, participants in the COP meetings — government negotiators, political and scientific advisors, etc. — constitute a self-referencing cabal whose ‘solutions’ to climate change draw on the same set of beliefs, values, assumptions and facts that created the problem in the first place. In particular, they are dedicated to unconstrained economic growth propelled by continuous technological development, the beating heart and lungs of capitalism and neoliberal economics. Acceptable approaches to emissions reductions therefore include wind turbines, solar photovoltaic panels, hydrogen technologies, electric vehicles and as yet unproved carbon capture and storage technologies — i.e., any solution that involves the massive capital investment and profit-making potential necessary to sustain growth and the current socio-economic system.

My expectation is that COP26 will maintain the tradition. The latest emissions reduction strategy advanced by many COP participants is Net Zero 2050. NZ2050 implies achieving a balance between carbon emissions and extractions from the atmosphere by mid-century. Indeed, climate models already depend on so-called negative emissions technologies, particularly ‘bio-energy with carbon capture and storage’ (BECCS), to achieve the Paris target of limiting global heating to under 1.5 oC.

BECCS assumes we can gradually displace fossil fuels by growing biofuel crops to extract large quantities of CO2 from the atmosphere, and then capture and sequester the CO2 emitted when the biomass is burned. The problem is that BECCS is as yet unproved at scale and highly controversial. For one thing, the massive cropland requirement would generate crisis-level conflict with both food production and biodiversity conservation. Some climate scientists see NZ2050 as yet another in a series of “magical yet unworkable” technical (non)solutions to the climate conundrum (Dyke et al., 2021). They argue that the idea of net zero simply continues what has proved to be a “recklessly cavalier ‘burn now, pay later’ approach” which has seen carbon emissions continue to soar.  Spratt and Dunlop (2021) characterize NZ2050 as “not just a goal, but a strategy for COP-26 to lock in many decades of unnecessary fossil fuels use well past 2050... [and creating] unacceptable risks of unstoppable climate warming.”  These characterizations depict a world in desperation, willing to risk catastrophic climate change in service of a perceived need to maintain growth-oriented business-as-usual-by-alternative-means. Perversely, then, mainstream climate disaster policy seems designed to serve modern techno-industrial  society and the capitalist growth economy so the latter appears to be “the solution to (not the cause of) the [problem]” (Spash, 2016, p. 931).

Second, climate change is not even the real problem; ecological overshoot is (Rees, 2020).  ‘Overshoot’ occurs when humanity consumes bio-resources faster than ecosystems can regenerate and waste production exceeds nature’s assimilative capacity (see GFN, 2021). In effect, the growing human enterprise is literally consuming and polluting the biophysical basis of its own existence.

Overshoot is a meta-problem: climate change; plunging biodiversity; pollution of land, air and waters; tropical deforestation; soil/land degradation etc., etc., are all co-symptoms of overshoot. Climate change is an excess waste problem — CO2 is the greatest waste by weight of modern techno-industrial (MTI) economies. We cannot solve any major symptom of overshoot in isolation. Indeed, the mainstream approach to emissions reductions will not only fail to subdue climate change but, by promoting material growth, will exacerbate overshoot (Seibert and Rees, 2021). On the other hand, if we eliminate overshoot we simultaneously relieve its various symptoms. The problem is, the only way to eliminate overshoot is, by definition, through some combination of absolute reductions in energy and material consumption and smaller populations, i.e., through controlled economic contraction. 

This is why we cannot expect COP-26 to address the human eco-predicament.


Dyke, J., Watson, R. & Knorr, W. (2021). Climate scientists: concept of net zero is a dangerous trap. The Conversation (22 April 2021),

GFN. (2021). Media Backgrounder: Earth Overshoot Day. Global Footprint Network,

Rees, W.E. (2020). Ecological economics for humanity’s plague phase. Ecological Economics, 169 (March 2020),

Seibert, M.K. and Rees, W.E. (2021). Through the eye of a needle: an eco-heterodox perspective on the renewable energy transition. Energies 14(15): 4508,

Spash, C. (2016). This changes nothing: the Paris Agreement to ignore reality. Globalizations, 13(6), 928–33.

Spratt, D. and Dunlop, I. (2021). "Net zero 2050”: a dangerous illusion. Breakthrough Briefing Note (July 2021),

Latest Peer-Reviewed Journal Content

Journal Content

Climate action in urban mobility: personal and political transformations
G Hochachka, K G Logan, J Raymond & W Mérida

Transformational climate action at the city scale: comparative South–North perspectives
D Simon, R Bellinson & W Smit

Stretching or conforming? Financing urban climate change adaptation in Copenhagen
S Whittaker & K Jespersen

Embodied carbon emissions in buildings: explanations, interpretations, recommendations
T Lützkendorf & M Balouktsi

Pathways to improving the school stock of England towards net zero
D Godoy-Shimizu, S M Hong, I Korolija, Y Schwartz, A Mavrogianni & D Mumovic

Urban encroachment in ecologically sensitive areas: drivers, impediments and consequences
M H Andreasen, J Agergaard, R Y Kofie, L Møller-Jensen & M Oteng-Ababio

Towards sufficiency and solidarity: COP27 implications for construction and property
D Ness

Local decarbonisation opportunities and barriers: UK public procurement legislation
K Sugar, T M Mose, C Nolden, M Davis, N Eyre, A Sanchez-Graells & D Van Der Horst

Integrating climate change and urban regeneration: success stories from Seoul
J Song & B Müller

Canadian cities: climate change action and plans
Y Herbert, A Dale & C Stashok

Energy, emerging technologies and gender in homes [editorial]
Y Strengers, K Gram-Hanssen, K Dahlgren & L Aagaard

Gender roles and domestic power in energy-saving home improvements
F Bartiaux

Socioeconomic and livelihood impacts within Bangkok’s expanding metropolitan region
G Gullette, P Thebpanya & S Singto

Complexifying urban expansion: an exploratory, gradient-based approach
S M Richter & R P Bixler

The Ethiopia Urban Expansion Initiative and knowledge exchange
P Lamson-Hall & R Martin

Wellbeing as an emergent property of social practice
G T Morgan, S Coleman, J B Robinson, M F Touchie, B Poland, A Jakubiec, S Macdonald, N Lach & Y Cao

Barriers and opportunities of fast-growing biobased material use in buildings
V Göswein, J Arehart, C Phan-huy, F Pomponi & G Habert

Planning gaps: unexpected urban expansion in five Colombian metropolitan areas
M M Salazar Tamayo & J D Julio Estrada

Modern methods of construction: reflections on the current research agenda [editorial]
S D Green

Masculine roles and practices in homes with photovoltaic systems
M Mechlenborg & K Gram-Hanssen

Brokering Gender Empowerment in Energy Access in the Global South
A Schiffer, M Greene, R Khalid, C Foulds, C A Vidal, M Chatterjee, S Dhar-Bhattacharjee, N Edomah, O Sule, D Palit & A N Yesutanbul

Housing adaptability: new research, emerging practices and challenges [editorial]
S Pelsmakers & E Warwick

See all

Join Our Community

commentariesDownload the PDF
reviewsDownload the PDF

Latest on Twitter

Latest Commentaries

PhD Video Challenge: Two Minute Stories

Raymond J. Cole (University of British Columbia) reflects on the recent PhD Video Challenge and considers its wider benefits to doctoral students, the built environment community and wider civil society. It provides a valuable new path by which building-related research can be made accessible to a broad audience and a means by which PhD students can gain wide exposure of their research. Significantly, the Challenge also conveys a positive message about the research community by demonstrating how researchers strive to enhance the public's lived experience.

Recladding work - existing cladding removed. Photo: Huang

Fred Sherratt (University of Colorado) responds to the recent Buildings & Cities special issue ‘Modern Methods of Construction: Beyond Productivity’. It is easy to be beguiled by the promise of new technologies and the notions of ‘technological progress’. However, an essential role for the research community is to critically and robustly explore the consequences of new technologies for their potential impacts. Does the technology even deliver what it promises? These questions deserve societal discussion.