www.buildingsandcities.org/insights/news/quality-energy-research-practices.html
How can energy
research practices be improved? A new approach emphasizing transparency, reproducibility
and quality in a recently published Buildings & Cities peer-reviewed article explains what energy researchers can do to improve their research design, execution and
writing.
A recent peer-reviewed Methods paper, published in Buildings & Cities, explores how practices could be improved in the conduct and publishing of energy research. Huebner, Fell & Watson (2021) highlight the importance of good quality research for applied energy studies, which often inform policy and can be of direct relevance in determining appropriate action for tackling and adapting to climate change. Given the urgency and gravity of this task, they argue that the rigour and quality of energy research should be subject to publishing practices similar to those used in the psychological and medical sciences. This is crucial reading for researchers beginning their careers, those already established, but also research councils and funders. In particular, these readers can gain insight into how to conduct and assess high quality research, and identify resources to support with the planning and implementation of a range of research approaches.
The authors focus on three dimensions of
'good research': transparency, reproducibility and quality and provide a clear
process for thinking about how to implement this into research practices. In
the paper, transparency is taken to mean making the essential components of
research (for example, sampling and analytical approaches) visible to others.
Reproducibility considers how information can be provided such that independent
studies can seek to reproduce results. The authors' preferred definition of
quality is less clear, but the implication is that this includes research which
'poses important questions, uses appropriate methods, assesses bias, and
considers alternative explanations for findings' (p. 3; following a definition
from the National Center for Dissemination of Disability).
Drawing on ideas and practices adapted from other scientific fields, particularly medicine and psychology, four specific tools are introduced for achieving transparency, reproducibility and quality:
Pre-analysis plans specify the study aims, types of data collection, and data analysis approach. The authors highlight the value of these for preventing the manipulation of research data to present favourable results. Reporting guidelines provide a means to support authors in determining what information to include in papers, for example sampling methods and recruitment processes. The authors suggest that preprints can be helpful for overcoming publishing bias (for example, where journals give preference to studies which demonstrate significant findings). Finally, the authors advocate for open data, or placing available data in an online repository. They highlight research which finds that research using open source data and code receives more citations than those publishing from closed data. A useful mantra, highlighted in the paper, is the European Commission's (2016) principle that research data should be 'as open as possible, as closed as necessary'.
The authors acknowledge that these different tools have varied degrees
of relevance for distinct approaches. For example, exploratory research (where
a strategy for analysis is not pre-determined) may be less amenable to a
pre-analysis plan. However, with hyperlinks to pre-analysis plans and reporting
guidelines for a variety of research approaches (including both qualitative and
quantitative strategies), the article is itself a useful repository to work
from when planning and publishing research. In addition, adopting these
approaches will help to align energy research with accepted best practice in
fields with rigorous checks on research quality, such as medicine.
Source: Huebner, Fell & Watson (2021)
The authors emphasise the need for 'more structural adjustments to the energy research ecosystem' (p.14). In particular, they highlight that some poor research and publishing practices are reinforced by the expectations of journals, for example prioritising the publication of research with significant results or confirming hypotheses, rather than research with 'negative' results.
Diverging from this norm, Buildings
& Cities welcomes Methods articles (like that discussed here) which
outline new techniques and critique existing approaches, and Replication
articles which explicitly set out to test previous findings, validate existing
data, and report results demonstrating 'failure'. With this Methods article,
Huebner, Fell & Watson have opened up dialogue around research quality, and
how tools used in the publishing process can create reassurances around this.
The next task is to work out how to continue this debate such that the broad
gamut of energy researchers can coalesce around a mutually agreed set of
guidance.
Beyond the building: governance challenges in social housing retrofit
H Charles
Heat stress in social housing districts: tree cover–built form interaction
C Lopez-Ordoñez, E Garcia-Nevado, H Coch & M Morganti
An observational analysis of shade-related pedestrian activity
M Levenson, D Pearlmutter & O Aleksandrowicz
Learning to sail a building: a people-first approach to retrofit
B Bordass, R Pender, K Steele & A Graham
Market transformations: gas conversion as a blueprint for net zero retrofit
A Gillich
Resistance against zero-emission neighbourhood infrastructuring: key lessons from Norway
T Berker & R Woods
Megatrends and weak signals shaping future real estate
S Toivonen
A strategic niche management framework to scale deep energy retrofits
T H King & M Jemtrud
Generative AI: reconfiguring supervision and doctoral research
P Boyd & D Harding
Exploring interactions between shading and view using visual difference prediction
S Wasilewski & M Andersen
How urban green infrastructure contributes to carbon neutrality [briefing note]
R Hautamäki, L Kulmala, M Ariluoma & L Järvi
Implementing and operating net zero buildings in South Africa
R Terblanche, C May & J Steward
Quantifying inter-dwelling air exchanges during fan pressurisation tests
D Glew, F Thomas, D Miles-Shenton & J Parker
Western Asian and Northern African residential building stocks: archetype analysis
S Akin, A Eghbali, C Nwagwu & E Hertwich
Lanes, clusters, sightlines: modelling patient flow in medical clinics
K Sailer, M Utley, R Pachilova, A T Z Fouad, X Li, H Jayaram & P J Foster
Analysing cold-climate urban heat islands using personal weather station data
J Taylor, C H Simpson, J Vanhatalo, H Sohail, O Brousse, & C Heaviside
Are simple models for natural ventilation suitable for shelter design?
A Conzatti, D Fosas de Pando, B Chater & D Coley
Impact of roofing materials on school temperatures in tropical Africa
E F Amankwaa, B M Roberts, P Mensah & K V Gough
Acceptability of sufficiency consumption policies by Finnish households
E Nuorivaara & S Ahvenharju
Key factors for revitalising heritage buildings through adaptive reuse
É Savoie, J P Sapinski & A-M Laroche
Cooler streets for a cycleable city: assessing policy alignment
C Tang & J Bush
Understanding the embodied carbon credentials of modern methods of construction
R O'Hegarty, A McCarthy, J O'Hagan, T Thanapornpakornsin, S Raffoul & O Kinnane
The changing typology of urban apartment buildings in Aurinkolahti
S Meriläinen & A Tervo
Embodied climate impacts in urban development: a neighbourhood case study
S Sjökvist, N Francart, M Balouktsi & H Birgisdottir
Environmental effects of urban wind energy harvesting: a review
I Tsionas, M laguno-Munitxa & A Stephan
Latest Commentaries
Lessons from Disaster Recovery: Build Better Before
Mary C. Comerio (University of California, Berkeley) explains why disaster recovery must begin well before a disaster occurs. The goal is to reduce the potential for damage beforehand by making housing delivery (e.g. capabilities and the physical, technical and institutional infrastructures) both more resilient and more capable of building back after disasters.
Will NDC 3.0 Drive a Buildings Breakthrough?
To achieve net zero GHG emissions by mid-century (the Breakthrough Agenda) it is vital to establish explicit sector-specific roadmaps and targets. With an eye to the forthcoming COP30 in Brazil and based on work in the IEA EBC Annex 89, Thomas Lützkendorf, Greg Foliente and Alexander Passer argue why specific goals and measures for building, construction and real estate are needed in the forthcoming round of Nationally Determined Contributions (NDC 3.0).