By Ilan Kelman (University College London, UK)
Climate change is not separate from other built environment challenges. To be positively impactful and effective, COP-26 needs to take on board the connections between climate change and other topics. This will ensure effective climate change action for our infrastructure.
The built environment experiences multiple challenges simultaneously. Air pollution and salt in oceanside air can corrode. Insects and rodents infiltrate rooms and the spaces between them. Environmental changes can damage or destroy structures, including through flood, drought, wind, fire, subsidence, heave, hail, rain, snow, ice, heat, and humidity.
Human-caused climate change brings impacts too, few of which are unique to climate change. When examining specific environmental impacts on specific infrastructure, climate change affects the parameters over decades, but does not impose much different to the past.
For instance, the built environment in locations with temperatures a small amount below freezing might be severely affected by freeze-thaw damage. Climate change’s rising average air temperature combined with expectations of more temperature fluctuations could push these areas from steady periods of below-freezing and above-freezing to more transitions between these ranges.
When moisture infiltrates cracks in buildings or roads and then freezes, it expands, damaging the infrastructure. The more freeze-thaw cycles, usually the more damage. Similarly, above-ground power lines frequently suffer when precipitation around the freezing mark results in ice accumulating on, and the weight snapping, cables and towers. More storms around this temperature mean more ice storms rather than just snow or just rain. These concerns do not emerge from climate change, but they are exacerbated by it.
Burying power lines does not necessarily help. Underground power lines have been knocked out in heat waves which are becoming more intense, more frequent, and longer lasting due to human-caused climate change. Plus, people revert to air conditioning and fans, boosting electricity use. Again, this is nothing new, but is made worse due to climate change.
Meanwhile, many storms and floods are becoming more intense, but less frequent from climate change. Irrespective, infrastructure needs to deal with wind and water. With many buildings sited in floodplains without disaster damage mitigation measures, the core issue is vulnerable development and lack of risk reduction. Climate change alters floodplains, expanding many, but has little impact on the baseline of inadequate codes, regulations, monitoring, and enforcement—especially considering how much flood damage occurs outside of identified floodplains.
Many places around the world successfully construct buildings to deal with weather. Strong roofs properly tied to walls will stay on during hurricanes. Flood-resistant materials and finishes permit occupancy soon after floodwater drains. Vegetation management around a fire-resistant property helps to avoid a structure igniting during a wildfire/bushfire.
If such techniques were always implemented to reduce disaster damage, then climate change altering the weather would have limited impact. Focusing on disaster damage mitigation would, by definition, embrace built environment adaptation.
Otherwise, isolating climate change measures could create disaster. Imagine that we construct an energy-efficient, off-grid school out of the expanding floodplain and capable of dealing with any weather. We have not helped much if it collapses in the next earthquake. Similarly, a zero- or negative-emissions building is commendable, yet goes only partway to being “clean” if it has problems with asbestos or formaldehyde.
Some exceptions do bring comparatively new built environment challenges from climate change. Of notable and immediate concern is excessive heat and humidity. Natural ventilation can do only so much to keep buildings habitable during expected heat waves, especially when the air temperature does not cool down much at night. For human survival, artificial indoor cooling will be necessary which, in turn, taxes the energy supply. With few viable adaptation options, these devastatingly lethal heat waves are avoided by stopping climate change.
As such, climate change adaptation provides little new, with other fields proffering generations of expertise, such as on disaster risk reduction, vulnerability reduction, pollution prevention, and resilient infrastructure. COP-26 has no need to re-invent what we know already and have implemented for millennia, with varying levels of success.
Success
cannot be augmented by divorcing one environmental influencer, namely human-caused
climate change, from wider endeavours regarding disasters, development, health,
and sustainability. Instead, COP-26 could highlight the connections, placing
climate change adaptation within other built environment processes while tackling
climate change as a springboard toward an overall much safer built environment
over the long-term.
Share:
Email
An alternative approach to delivering safe, sustainable surgical theatre environments
C A Short, A W Woods, L Drumright, R Zia & N Mingotti
Adapting owner-occupied dwellings in the UK: lessons for the future
T Hipwood
Integrating low energy cooling & ventilation strategies in Indian residences
M J Cook, Y Shukla, R Rawal, C Angelopoulos, L Caruggi-De-Faria, D Loveday, E Spentzou, & J Patel
Balconies as adaptable spaces in apartment housing
T Peters & S Masoudinejad
Inclusive Living: ageing, adaptations and future-proofing homes
V McCall
Residential geothermal air-conditioning: inhabitants’ comfort, behaviour and energy use
L Thomas, A Woods, R Powles, P Kalali, & S Wilkinson
Energy retrofit and passive cooling: overheating and air quality in primary schools
D Grassie, Y Schwartz, P Symonds, I Korolija, A Mavrogianni & D Mumovic
Outdoor PM2.5 air filtration: optimising indoor air quality and energy
E Belias & D Licina
Architects’ ‘enforced togetherness’: new design affordances of the home
E Marco, M Tahsiri, D Sinnett & S Oliveira
Overheating assessment in Passivhaus dwellings: the influence of prediction tools
V L Goncalves, V Costanzo, K Fabbri & T Rakha
The use of apartment balconies: context, design & social norms
M Smektała & M Baborska-Narożny
Sharing a home under lockdown in London
F Blanc & K Scanlon
Projected climate data for building design: barriers to use
P Rastogi, A Laxo, L Cecil &D Overbey
Residents’ views on adaptable housing: a virtual reality-based study
J Tarpio & S Huuhka
Technological transitions in climate control: lessons from the House of Lords
Henrik Schoenefeldt
Internal thermal mass for passive cooling and ventilation: adaptive comfort limits, ideal quantities, embodied carbon
T de Toldi, S Craig & L Sushama
Understanding air-conditioned lives: qualitative insights from Doha
Russell Hitchings
Living with air-conditioning: experiences in Dubai, Chongqing & London
N Murtagh, S Badi, Y Shi, S Wei, W Yu
Air-conditioning in New Zealand: power and policy
H Byrd, S Matthewman & E Rasheed
Summertime overheating in UK homes: is there a safe haven?
P Drury, S Watson & K J Lomas
Survey study on energy use in UK homes during Covid-19
G M Huebner, N E Watson, K Direk, E McKenna, E Webborn, F Hollick, S Elam & T Oreszczyn
Ceiling-fan-integrated air-conditioning: thermal comfort evaluations
M Luo, H Zhang, Z Wang, E Arens, W Chen, F S Bauman & P Raftery
The future of IEQ in green building certifications
D Licina, P Wargocki, C Pyke & S Altomonte
Architectural form: flexibility, subdivision and diversity in Manhattan loft buildings
C S Kayatekin
The significance of urban systems on sustainability and public health [editorial]
J Taylor & P Howden-Chapman
Empowered by planning law: unintended outcomes in the Helsinki region
A Joutsiniemi, M Vaattovaara & J Airaksinen
Climate change projections for sustainable and healthy cities
C Goodess, S Berk, S B Ratna, O Brousse, M Davies, C Heaviside, G Moore & H Pineo
Retrofit at scale: accelerating capabilities for domestic building stocks [editorial]
F Wade & H J Visscher
Latest Commentaries
Publishing Books: Some Advice and Warnings
Philip Steadman (University College London) has authored a dozen books over 50 years. Reflecting on his own experiences, he offers some advice to new authors planning to publish books about architecture and building.
Christopher Alexander and 'Notes on the Synthesis of Form'
Philip Steadman (University College London) revisits and critiques this influential book by Christopher Alexander (1936-2022). Its method relies in part on the mathematics of set and graph theory, together with a computer technique for analysing complex systems and dividing them into their component sub-systems.