Managing the Long Term and Complexity: Policies for Mitigation

By Bruno Peuportier (MINES ParisTech, PSL Research University, FR)

The longevity of buildings and lengthy roadmaps for a transition stretching to 2050 are misaligned with the urgency to act on the climate situation and the short mandates of elected officials. In this context, dealing with time is complex. Good practice needs to focus on acting and reporting during a shorter period (the electoral cycle) rather than postponing the progress to the next period. Three specific actions are recommended: (1) the need for clear actions, measurement and reporting; (2) policies and regulations must account for complexity and not result in merely shifting impacts; and (3) life cycle thinking.

1. Acting and reporting requires measurement

<strong>Figure 1:</strong> Measured heating load in 18 identical passive houses. <em>Source:</em> Bühring and Kiefer (2002)
Figure 1: Measured heating load in 18 identical passive houses. Source: Bühring and Kiefer (2002)

Much can be learned from monitoring, at any geographic scale, and feedback helps improving road maps. Figure 1 shows the variation in measured heating energy consumption for 18 identical low energy houses in Germany according to the passive house label (Feist et al., 2005).

Measurement is essential to verify the real performance of completed buildings, which can deviate significantly from the calculations. Figure 1 shows that best practice is achieved on average in the case of this exemplary project, and that the actual energy bill significantly depends on occupants’ behaviour. This suggests that involvement of citizens is essential in the energy transition.

2. Urgency does not imply haste

<strong>Figure 2:</strong> CO2 content of 1 kWh electricity consumed in France. <em>Note:</em> GHG-P = greenhouse gases protocol, MD = marginal derivative LCA method. <em>Source:</em> Frapin and Peuportier (2020)
Figure 2: CO2 content of 1 kWh electricity consumed in France. Note: GHG-P = greenhouse gases protocol, MD = marginal derivative LCA method. Source: Frapin and Peuportier (2020)

Long-lasting artefacts like buildings deserve careful design study, and this is especially true on a global policy scale. A global energy transition policy including consumption and production should be elaborated rather than promoting simplistic strategies. For instance, replacing all oil and gas boilers with electric heating is simplistic. This will create a very high peak demand in winter during which wind and solar production will be insufficient. Renewable gas (hydrogen or synthetic gas) can be produced when solar and wind resources are abundant, and stored to meet peak demand. Figure 2 shows the large uncertainty about the CO2 content of 1 kWh electricity consumed in France related to different energy transition scenarios and life cycle assessment (LCA) methods (Frapin and Peuportier, 2020). This evidence questions the systematic electrification promoted by some policy makers. GHG emissions may be higher for electric heating than for gas (being 270g CO2eq/kWh) using the GHG protocol (GHG-P) or marginal derivative (MD) LCA methods.

3. Life cycle thinking

Life cycle assessment addresses not only greenhouse gases (GHG) emissions, but a set of indicators related to damage to human health, biodiversity and resources. The aim is to avoid impact shifting, e.g. replacing CO2 emissions with nuclear waste, risk and depletion of resources. This also adds complexity but it is essential for a truly responsible policy.

<strong>Figure 3:</strong> Cumulative GHG emissions per m<sup>2</sup> of window: difference between double & triple glazing, residential building in Paris climatic conditions. <em>Source:</em> Lab Recherche Environment (2021)
Figure 3: Cumulative GHG emissions per m2 of window: difference between double & triple glazing, residential building in Paris climatic conditions. Source: Lab Recherche Environment (2021)

Another goal of lifecycle thinking is to avoid impact shifting over time. For instance, the forthcoming the French regulation imposes CO2 thresholds on products without accounting for their energy benefit during the use stage. The aim is to reduce GHG emissions during the manufacturing process. But this short-term approach disadvantages longer-term savings e.g. insulation and renewable energy systems. Such an approach will shift impacts to the use stage and therefore is inappropriate: whole lifecycle indicators should be used.

Discounting the impacts of future GHG emissions, as in so-called "simplified dynamic LCA", is also implemented in the French regulation. This creates a debt to future generations and disadvantages energy efficient techniques, as shown in Figure 3. When comparing double and triple glazing, a truly dynamic hourly LCA method (Roux et al., 2016), and an LCA with a fixed time horizon according to the French regulation lead to different results. Using an hourly dynamic LCA, triple glazing reduces GHG emissions by around 40 kg CO2eq/m2 of window over 50 years, whereas it is of no interest when discounting future emissions (LCA with fixed time horizon).

The choice of a simplistic assessment will yield different results – hourly dynamic LCA vs LCA with a fixed time horizon. 

4. Conclusions

These examples show the influence that policies and regulation have on technological choices and actual outcomes. To be effective and enable robust progress towards a climate responsive built environment policies and regulation must address complexity and verify actual results. Approaches that are too simplistic are likely to merely shift the impacts. The creation of short-term goals and actions (to augment medium- and long-term goals) are vital to ensure that progress is made.

References

Frapin, M. et Peuportier, B. (2020). ACVs Energies – Livrable 5. Etudes de cas et Résultats obtenus. Paris: ADEME. https://librairie.ademe.fr/energies-renouvelables-reseaux-et-stockage/4447-acvs-energies-comparaison-d-approche-acv-des-systemes-energetiques.html

Bühring, A. and Kiefer, K. (2002). Monitoringbericht 2001 zum Förderprogramm Wärmeerzeugung im Passivhaus der EnBW Energie Baden-Württemberg AG. Freiburg: Fraunhofer-Institut für Solare Energiesysteme.

Feist, W., Schnieders J., Dorer V., Haas A. (2005), Re-inventing air heating: convenient and comfortable within the frame of the passive house concept. Energy and Buildings, 37 (11), 1186–1203.

Lab recherche environnement. (2021). L’analyse de cycle de vie dynamique décryptée par les chercheurs. https://www.lab-recherche-environnement.org/fr/article/lanalyse-de-cycle-de-vie-dynamique-decryptee-par-les-chercheurs/

Roux, C., Schalbart, P. and Peuportier, B. (2016).  Accounting for temporal variation of electricity production and consumption in the LCA of an energy-efficient house. Journal of Cleaner Production, 113, 532-540. https://doi.org/10.1016/j.jclepro.2015.11.052

Latest Peer-Reviewed Journal Content

Journal Content

Evaluating mitigation strategies for building stocks against absolute climate targets
L Hvid Horup, P K Ohms, M Hauschild, S R B Gummidi, A Q Secher, C Thuesen, M Ryberg

Equity and justice in urban coastal adaptation planning: new evaluation framework
T Okamoto & A Doyon

Normative future visioning: a critical pedagogy for transformative adaptation
T Comelli, M Pelling, M Hope, J Ensor, M E Filippi, E Y Menteşe & J McCloskey

Suburban climate adaptation governance: assumptions and imaginaries affecting peripheral municipalities
L Cerrada Morato

Urban shrinkage as a catalyst for transformative adaptation
L Mabon, M Sato & N Mabon

Maintaining a city against nature: climate adaptation in Beira
J Schubert

Ventilation regulations and occupant practices: undetectable pollution and invisible extraction
J Few, M Shipworth & C Elwell

Nature for resilience reconfigured: global- to-local translation of frames in Africa
K Rochell, H Bulkeley & H Runhaar

How hegemonic discourses of sustainability influence urban climate action
V Castán Broto, L Westman & P Huang

Fabric first: is it still the right approach?
N Eyre, T Fawcett, M Topouzi, G Killip, T Oreszczyn, K Jenkinson & J Rosenow

Gender and the heat pump transition
J Crawley, F Wade & M de Wilde

Social value of the built environment [editorial]
F Samuel & K Watson

Understanding demolition [editorial]
S Huuhka

Data politics in the built environment [editorial]
A Karvonen & T Hargreaves

European building passports: developments, challenges and future roles
M Buchholz & T Lützkendorf

Decision-support for selecting demolition waste management strategies
M van den Berg, L Hulsbeek & H Voordijk

Assessing social value in housing design: contributions of the capability approach
J-C Dissart & L Ricaurte

Electricity consumption in commercial buildings during Covid-19
G P Duggan, P Bauleo, M Authier, P A Aloise-Young, J Care & D Zimmerle

Disruptive data: historicising the platformisation of Dublin’s taxi industry
J White & S Larsson

Impact of 2050 tree shading strategies on building cooling demands
A Czekajlo, J Alva, J Szeto, C Girling & R Kellett

Social values and social infrastructures: a multi-perspective approach to place
A Legeby & C Pech

Resilience of racialized segregation is an ecological factor: Baltimore case study
S T A Pickett, J M Grove, C G Boone & G L Buckley

See all

Latest Commentaries

Time to Question Demolition!

André Thomsen (Delft University of Technology) comments on the recent Buildings & Cities special issue ‘Understanding Demolition’ and explains why this phenomenon is only beginning to be understood more fully as a social and behavioural set of issues. Do we need an epidemiology of different demolition rates?

Where are Women of Colour in Urban Planning?

Safaa Charafi asks: is it possible to decolonialise the planning profession to create more inclusive and egalitarian urban settings? It is widely accepted that cities are built by men for other men. This male domination in urban planning results in cities that often do not adequately address challenges encountered by women or ethnic and social minorities. Although efforts are being taken to include women in urban planning, women of colour are still under-represented in many countries, resulting in cities that often overlook their needs.

Join Our Community