What China's Carbon Neutrality Means for its Building Stock

Scenarios for China’s building-related CO2 reductions. Adapted from: China Association of Building Energy Efficiency (2020)
Scenarios for China’s building-related CO2 reductions. Adapted from: China Association of Building Energy Efficiency (2020)

By Wei Yang and Jie Li (Tianjin University, CN)

China's pledge to become carbon neutral will have profound effects on its existing and new buildings. Scalable scenarios from national to district levels have been created to begin a process of assessing and apportioning carbon budgets.  A range of new economic, social and technical measures will be needed to achieve this radical transformation.

In June 2015, China provided its Nationally Determined Contribution to the Paris Agreement: its overall carbon emissions would peak around 2030 (Department of Climate Change, National Development and Reform Committee of China, 2015). At the end of 2020, President Xi Jinping (2020) stated China’s new national goal of carbon neutrality: to become carbon neutral before 2060 with a peak in carbon emissions before 2030 and more than 65% reduction per GDP carbon intensity (based on the 2005 level). Roadmaps for fulfilling those overarching goals have been planned at national, regional, and urban levels, and even for each urban district.

Buildings and the built environment contribute about half of the China’s total carbon emissions. Building operation accounts for about 22% of the national energy-related emissions, whereas the embodied emissions in the construction materials, construction operations along with associated transport contributes a further 28% of the national total.

The main strategies for reaching carbon neutrality in the building stock include increasing the energy efficiency of the new and existing buildings, extensive application of building integrated renewable energy, decarbonization of the energy sources (mainly the grid electricity), electrification of the building energy system, and the carbon sink of natural vegetation and water bodies (Figure 1). Moreover, carbon capture & storage will facilitate the last step to reach the carbon neutrality goal (China Association of Building Energy Efficiency, 2020).

Scenario studies had shown that strict measures should be taken immediately in order to keep the temperature rise within 1.5 oC and to reach carbon neutrality by 2060. The construction rate of new buildings (about 4 billion m2 per year) has remained steady in the recent years (National Bureau of Statistics of China, 2020). It is expected that the building stock will grow at the same rate in the next decade in the business-as-usual scenario. In order to reach the carbon neutrality targets, all new and existing buildings will need to be zero carbon in the operational stage, which means a vast amount of investment. The roadmap studies for peak carbon and carbon neutrality at smaller scale had shown dilemmas for future new construction and the carbon reduction goals. Although the national targets do not simply scale down evenly to each individual district, there is still a need to restrict the amount of new construction and at the same time improving the sustainability of the existing building stock - approximately 66 billion m2 (China Association of Building Energy Efficiency, 2020). This suggests there will be a great need for energy efficient retrofit in the coming decades (Chen et al., 2020). Therefore, higher education and professional education will gradually emphasise the sustainable management of the existing building stocks and energy efficient / zero-carbon retrofit. Specific programs on those topics are expected to be established in the near future.

Scenario and policy studies had shown that stricter building energy saving targets and standards are needed and a life cycle approach should be applied. China has already issued the Building Carbon Emission Calculation Standard (MOHURD, 2019a) and the Technical Standard for Nearly Zero Energy Building (MOHURD, 2019b). Subsidies are available for ultra-low energy buildings and building integrated renewable energy utilization. The costs of solar PVs had decreased by 80% in the last 10 years. R&D for sustainable building materials also contributes to the reduction of embodied carbon. Carbon trading will be introduced into the building and real estate sector, and this will improve the economic feasibility of zero-carbon buildings and the energy efficient retrofit of existing buildings. Nonetheless, it is more important to consider the carbon emissions of the whole building stock in a long-term and life cycle perspective, and to plan the roadmaps at different scales and different sectors with a holistic understanding of the built environment.

References

Chen, B., Faeste, L., Jacobsen, R., Kong, M.T., Lu, D. & Palme, T. (2020). How China Can Achieve Carbon Neutrality by 2060. https://www.bcg.com/publications/2020/how-china-can-achieve-carbon-neutrality-by-2060

China Association of Building Energy Efficiency. (2020). China Building Energy Research Report [in Chinese]  https://www.cabee.org/site/content/24021.html

Department of Climate Change, National Development and Reform Committee of China. (2015). Enhanced Actions on Climate Change: China’s Intended Nationally Determined Contributions. https://www4.unfccc.int/sites/submissions/INDC/Published%20Documents/China/1/China%27s%20INDC%20-%20on%2030%20June%202015.pdf

MOHURD (2019a). Building Carbon Emission Calculation Standard (GB/T51366-2019).http://download.mohurd.gov.cn/bzgg/gjbz/GBT%2051366-2019%20%E5%BB%BA%E7%AD%91%E7%A2%B3%E6%8E%92%E6%94%BE%E8%AE%A1%E7%AE%97%E6%A0%87%E5%87%86.pdf

MOHURD (2019b) Technical Standard for Nearly Zero Energy Building (GB/T51350-2019). http://download.mohurd.gov.cn/bzgg/gjbz/GBT%2051350-2019%20%E8%BF%91%E9%9B%B6%E8%83%BD%E8%80%97%E5%BB%BA%E7%AD%91%E6%8A%80%E6%9C%AF%E6%A0%87%E5%87%86.pdf

National Bureau of Statistics of China. (2020). China Statistical Yearbook 2020, Beijing: China Statistics Press. Table 14-23.

Xi, Jiang (2020). Speech at Climate Ambition Summit. https://www.chinadaily.com.cn/a/202012/13/WS5fd575a2a31024ad0ba9b7ac.html

Latest Peer-Reviewed Journal Content

Journal Content

Evaluating mitigation strategies for building stocks against absolute climate targets
L Hvid Horup, P K Ohms, M Hauschild, S R B Gummidi, A Q Secher, C Thuesen, M Ryberg

Equity and justice in urban coastal adaptation planning: new evaluation framework
T Okamoto & A Doyon

Normative future visioning: a critical pedagogy for transformative adaptation
T Comelli, M Pelling, M Hope, J Ensor, M E Filippi, E Y Menteşe & J McCloskey

Suburban climate adaptation governance: assumptions and imaginaries affecting peripheral municipalities
L Cerrada Morato

Urban shrinkage as a catalyst for transformative adaptation
L Mabon, M Sato & N Mabon

Maintaining a city against nature: climate adaptation in Beira
J Schubert

Ventilation regulations and occupant practices: undetectable pollution and invisible extraction
J Few, M Shipworth & C Elwell

Nature for resilience reconfigured: global- to-local translation of frames in Africa
K Rochell, H Bulkeley & H Runhaar

How hegemonic discourses of sustainability influence urban climate action
V Castán Broto, L Westman & P Huang

Fabric first: is it still the right approach?
N Eyre, T Fawcett, M Topouzi, G Killip, T Oreszczyn, K Jenkinson & J Rosenow

Gender and the heat pump transition
J Crawley, F Wade & M de Wilde

Social value of the built environment [editorial]
F Samuel & K Watson

Understanding demolition [editorial]
S Huuhka

Data politics in the built environment [editorial]
A Karvonen & T Hargreaves

European building passports: developments, challenges and future roles
M Buchholz & T Lützkendorf

Decision-support for selecting demolition waste management strategies
M van den Berg, L Hulsbeek & H Voordijk

Assessing social value in housing design: contributions of the capability approach
J-C Dissart & L Ricaurte

Electricity consumption in commercial buildings during Covid-19
G P Duggan, P Bauleo, M Authier, P A Aloise-Young, J Care & D Zimmerle

Disruptive data: historicising the platformisation of Dublin’s taxi industry
J White & S Larsson

Impact of 2050 tree shading strategies on building cooling demands
A Czekajlo, J Alva, J Szeto, C Girling & R Kellett

Social values and social infrastructures: a multi-perspective approach to place
A Legeby & C Pech

Resilience of racialized segregation is an ecological factor: Baltimore case study
S T A Pickett, J M Grove, C G Boone & G L Buckley

See all

Latest Commentaries

Time to Question Demolition!

André Thomsen (Delft University of Technology) comments on the recent Buildings & Cities special issue ‘Understanding Demolition’ and explains why this phenomenon is only beginning to be understood more fully as a social and behavioural set of issues. Do we need an epidemiology of different demolition rates?

Where are Women of Colour in Urban Planning?

Safaa Charafi asks: is it possible to decolonialise the planning profession to create more inclusive and egalitarian urban settings? It is widely accepted that cities are built by men for other men. This male domination in urban planning results in cities that often do not adequately address challenges encountered by women or ethnic and social minorities. Although efforts are being taken to include women in urban planning, women of colour are still under-represented in many countries, resulting in cities that often overlook their needs.

Join Our Community