Why Building Regulations Must Incorporate Embodied Carbon

Why Building Regulations Must Incorporate Embodied Carbon

By Harpa Birgisdóttir (Aalborg University Copenhagen, DK)

Building regulations are important drivers for change. They have been focused on reducing the operational energy in buildings. This is now changing in some countries as evidence shows the significant amount of embodied emissions in construction materials. Additional new requirements are setting targets for embodied carbon in buildings and whole-life carbon assessments in order to decarbonise the built environment. Regulations are being implemented in Netherlands, France and Denmark, and planned in Finland and Sweden.

Globally, the building and construction sector is responsible for approximately 38% of all energy-related GHG emissions. Approximately 28% comes from operational energy use for the total existing building stock and another 10% comes from embodied carbon in materials for new construction and refurbishment (UNEP 2020). New annual construction only adds to a few percentage points of the existing building stock’s total area. However, their share (and that of building refurbishments) of the embodied impacts related to construction of building materials is significant.

Energy requirements have been an essential and accepted part of building regulations in many countries for years. However, regulating energy and carbon in the operational aspect of buildings is not sufficient to create a net-zero society.  Evidence from whole-life cycle carbon assessments of buildings shows increased importance of embodied carbon in building materials and components.  In order to reduce the embodied carbon in materials, new requirements need to be introduced with limit values based on whole-life carbon assessments. We must start introducing requirements worldwide that also embrace the embodied carbon, as has already been implemented or agreed in the Netherlands, France and Denmark, and planned in Finland and Sweden (BPIE, 2021).

The hidden challenge of embodied impacts for new construction

Research has highlighted the increasing significance of embodied carbon in new construction. A systematic life cycle analysis of 650 buildings from around the world (that conform to current energy performance regulations in their respective countries) shows that the average share of embodied GHG emissions from buildings is approximately 20–25% of life cycle GHG emissions. This increases to 45–50% for highly energy-efficient buildings and surpasses 90% in extreme cases (Röck et al., 2020). A systematic study of the whole life carbon assessment of 60 building cases in Denmark found the share of embodied carbon is on average about 75% over a reference study period of 50 years.  This finding is based on building regulation requirements for operational emissions and forecast lower emissions from the energy grid according to political agreements. In addition, this study shows a variation of the embodied carbon of up to 2.9 times, which indicate a large potential for reduction of both upfront and total carbon emissions of new constructions in Denmark (Zimmermann et al., 2021).

Introduction of carbon regulations in Denmark

In March 2021, the Danish government introduced targets in in the building regulations for whole life carbon which come into effect in 2023. This whole life approach embraces both operational and embodied carbon. Buildings below 1,000 m2 will initially only be required to calculate the life cycle assessment (LCA), while buildings over 1,000 m2 will be required to meet whole life carbon limits (CO2e). This applies for all building types. The initial limit value is 12 kg CO2e/m2/year, supported by a specific voluntary CO2-class with a limit value of 8 kg CO2/m2/year. The limit values are to be tightened every second year until 2029. The regulation of smaller buildings is expected to commence in 2025 (Ministry of the Interior and Housing, 2021).

Retrofitting the existing building stock

The retrofit of the existing building stock is needed in order to bring down the climate impacts of most buildings. Most assessments show the climate impacts of renovation is beneficial. However, this requires thought (and calculation) to ensure the embodied carbon in material choices does not ruin the gains in operational energy reductions (Kanafani et al., 2021).

Are these regulations meeting the Paris agreement?

These requirements are based on so called bottom-up benchmarks, which are based on a gradual reduction of the emissions compared to common building practice. But is this sufficient to meet the rapid decarbonisation that climate scientists say is needed to meet the goals agreed at the Paris COP? This issue has become even more urgent after the alarming climate reports from the IPCC (2021).

Can the construction sector deliver more? The assessment and calculation of the climate impact of buildings is a new discipline in construction, which the entire value chain is now acquiring knowledge about how they can deliver to this agenda. Thereafter, the entire value chain must help to ensure that reductions are achieved.

The Danish example of regulating whole-life carbon is a crucial step in the right direction. But much bigger steps have to be taken to ensure that compliance with the Paris Agreement in order to avoid the worst-case scenarios for temperature rises. Therefore, the use of more ambitious benchmarks based on the real carbon budgets to stay within the climate parameters set by the Paris Agreement, so called top-down based targets, have to come into play worldwide (Habert et al., 2020). For the Danish case, it is crucial that as many as possible fulfill the voluntary CO2 class with ambitious benchmarks.

There is no doubt about the difficult challenges facing the construction sector, but ambitious efforts can also contribute effectively to the necessary overall reduction of climate impacts. International cooperation and harmonization are key and need to be accelerated. The ongoing International Energy Agency Annex 72 “Assessing Life Cycle Related Environmental Impacts Caused by Buildings” is one important enabler (Frischknecht et al., 2019). Research plays an important role in the development of robust evaluation methods that include the timing of reductions and avoid greenwashing. Experiences, tools and methods from the countries that have taken the first steps should be implemented as soon as possible in countries taking their first steps.


BPIE. (2021). Whole-life carbon: challenges and solutions for highly efficient and climate-neutral buildings. Brussels: Buildings Performance Institute Europe. https://www.bpie.eu/wp-content/uploads/2021/05/BPIE_WLC_Summary-report_final.pdf

Frischknecht, R., Birgisdottir, H., Chae, C-U, Lützkendorf, T. and Passer, A. (2019). IEA EBC Annex 72 - Assessing life cycle related environmental impacts caused by buildings – targets and tasks. IOP Conference Series: Earth and Environmental Science, 323. SUSTAINABLE BUILT ENVIRONMENT D-A-CH CONFERENCE 2019 (SBE19 Graz) 11–14 September 2019, Graz, Austria.

Ministry of the Interior and Housing. (2021). National Strategy for Sustainable Construction Denmark. https://im.dk/Media/637602217765946554/National_Strategy_for_Sustainable_Construktion.pdf

Habert, G., Röck, M., Steininger, K., Lupisek, A., Birgisdottir, H., Desing, H., Chandrakumar, C., Pittau, F., Passer, A., Rovers, R., Slavkovic, K., Hollberg, A., Hoxha, E., Jusselme, T., Nault, E., Allacker, K. and Lützkendorf, T. (2020). Carbon budgets for buildings: harmonising temporal, spatial and sectoral dimensions. Buildings and Cities, 1(1), 429–452. http://doi.org/10.5334/bc.47

IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press. In Press.

Kanafani, K., Lund, A.M., Worm, A.S., Jensen, J.D., Birgisdottir, H., Rose, J. (2021). Klimaeffektiv renovering Balancen mellem energibesparelse og materialepåvirkninger i bygningsrenovering. BUILD Rapport No. 2021:24. https://build.dk/Pages/Klimaeffektiv-renovering.aspx

Röck, M., Saade, M.R., Balouktsi, M., Rasmussen, F.N. Birgisdottir, H., Frischknecht, R., Habert, G., Lützkendorf, T. & Passer, A.  (2020). Embodied GHG emissions of buildings – the hidden challenge for effective climate change mitigation. Applied Energy, 258, 114107.  https://doi.org/10.1016/j.apenergy.2019.114107    

UNEP. (2020). 2020 Global Status Report for Buildings and Construction: Towards a Zero-emission, Efficient and Resilient Buildings and Construction Sector. Nairobi: United Nations Environment Programme. https://wedocs.unep.org/bitstream/handle/20.500.11822/34572/GSR_ES.pdf?sequence=3&isAllowed=y

Zimmermann, R. K., Andersen, C. M. E., Kanafani, K., & Birgisdottir, H. (2021). Whole Life Carbon Assessment of 60 buildings: Possibilities to develop benchmark values for LCA of buildings. Polyteknisk Boghandel og Forlag. BUILD Report No. 2021:12 https://sbi.dk/Pages/Whole-Life-Carbon-Assessment-of-60-buildings.aspx

Latest Peer-Reviewed Journal Content

Journal Content

Alternatives to air-conditioning: policies, design, technologies, behaviours [editorial]
B Ford, D Mumovic & R Rawal

Benchmarking energy performance: indicators and models for Dutch housing associations
H S van der Bent, H J Visscher, A Meijer & N Mouter

Emissions from a net-zero building in India: life cycle assessment
M Jain & R Rawal

Lack of adaptability in Brazilian social housing: impacts on residents
S B Villa, P B Vasconcellos, K C R de Bortoli & L B de Araujo

Participation in domestic energy retrofit programmes: key spatio- temporal drivers
E Mohareb, A Gillich & D Bristow

Embodied carbon of concrete in buildings, Part 2: are the messages accurate?
A Moncaster, T Malmqvist, T Forman, F Pomponi & J Anderson

An alternative approach to delivering safe, sustainable surgical theatre environments
C A Short, A W Woods, L Drumright, R Zia & N Mingotti

Adapting owner-occupied dwellings in the UK: lessons for the future
T Hipwood

Integrating low energy cooling & ventilation strategies in Indian residences
M J Cook, Y Shukla, R Rawal, C Angelopoulos, L Caruggi-De-Faria, D Loveday, E Spentzou, & J Patel

Balconies as adaptable spaces in apartment housing
T Peters & S Masoudinejad

Inclusive Living: ageing, adaptations and future-proofing homes
V McCall

Residential geothermal air-conditioning: inhabitants’ comfort, behaviour and energy use
L Thomas, A Woods, R Powles, P Kalali, & S Wilkinson

Energy retrofit and passive cooling: overheating and air quality in primary schools
D Grassie, Y Schwartz, P Symonds, I Korolija, A Mavrogianni & D Mumovic

Outdoor PM2.5 air filtration: optimising indoor air quality and energy
E Belias & D Licina

Architects’ ‘enforced togetherness’: new design affordances of the home
E Marco, M Tahsiri, D Sinnett & S Oliveira

Overheating assessment in Passivhaus dwellings: the influence of prediction tools
V L Goncalves, V Costanzo, K Fabbri & T Rakha

The use of apartment balconies: context, design & social norms
M Smektała & M Baborska-Narożny

Sharing a home under lockdown in London
F Blanc & K Scanlon

Projected climate data for building design: barriers to use
P Rastogi, A Laxo, L Cecil &D Overbey

Residents’ views on adaptable housing: a virtual reality-based study
J Tarpio & S Huuhka

Technological transitions in climate control: lessons from the House of Lords
Henrik Schoenefeldt

Internal thermal mass for passive cooling and ventilation: adaptive comfort limits, ideal quantities, embodied carbon
T de Toldi, S Craig & L Sushama

Understanding air-conditioned lives: qualitative insights from Doha
Russell Hitchings

Living with air-conditioning: experiences in Dubai, Chongqing & London
N Murtagh, S Badi, Y Shi, S Wei, W Yu

Air-conditioning in New Zealand: power and policy
H Byrd, S Matthewman & E Rasheed

Summertime overheating in UK homes: is there a safe haven?
P Drury, S Watson & K J Lomas

See all

Join Our Community

Latest Commentaries

Lessons from the Swiss Impulse Programme

The former Swiss 'Impulse programme' was a successful response to the 1970s energy crisis. It provides important lessons for today’s climate emergency about what governments, industry and academia can do to create a successful transition within the construction industry. Niklaus Kohler and Kurt Meier (both former members of the Construction and Energy Impulse programmes) reflect on key lessons for today about its implementation and how to sustain change over the short and long term.

New European Bauhaus Festival: Living within Planetary Boundaries

The first annual festival of the New European Bauhaus – a cultural initiative of Ursula von der Leyen (President of the European Commission) – took place in Brussels 9 – 12 June 2022. This ambitious programme and its recent festival recognises the built environment's centrality to creating climate neutrality, quality of life and social equity. Matti Kuittinen (Aalto University, coordinator of the Nordic Bauhaus programme) reflects on the festival, summarises its takeaways and applauds the mainstreaming of the New European Bauhaus.