www.buildingsandcities.org/insights/reviews/energy-modelling-in-architecture.html
By Sonja Oliviera, Bill Gething, Elena Marco. RIBA Publishing, 2020, ISBN 9781859469101
Malcolm J Cook reviews this practice guide, which offers a unique insight into the social and organisational challenges facing architectural practices engaged in energy modelling and provides several practical examples. The book is a must read for practitioners, educators and researchers involved in energy modelling, as well as new starters.
Buildings that overheat in summer or waste energy are still too common. We know how to design healthy, low-energy buildings, and have affordable tools and models at our disposal to avoid these problems. In a world where accurate energy prediction of building designs is so important, an appreciation of the concepts and experiences of energy modelling is of fundamental importance. This knowledge should be embedded in appropriate university courses and design practice. This book is aimed at the latter. There are many books available on energy modelling that provide much detail on algorithms, mathematical models and solution techniques. That is not what this book is about. Instead, this book focuses on the social and organisational processes that enable effective energy analysis to be integrated into architectural practice. Through case studies and the experience of practicing architects we learn why this is not straightforward.
The book is a compilation of experiences and viewpoints which avoids a narrowness of views. Compiled by editors who understand practitioners, educators and researchers, it offers a unique insight into the challenges facing architectural practices engaged in energy modelling and their experiences. It embraces the now well-established premise that collaboration is essential. The key to successful low energy design is for architects to work closely with engineers. By considering building performance early in the design process, an effective dialogue is created, offering the important opportunity for all parties to share and understand performance aspirations and co-create appropriate solutions.
The book repeatedly comes back to the benefits of energy modelling and how this has been successfully employed, rather than losing its way in pure architectural design:
'The process of modelling the building … means that designers can drill down into all elements of the building and focus on optimising them in terms of energy and design …'. [p. 76]At the same time, the book, quite rightly, avoids detailed discussions of specific codes and software packages but rather focuses on the purpose (and benefits) of energy modelling. For example, we read how the collective use of different modelling tools:
'enabled the design team to tune the building façade to maximise the energy-saving potential …' [p. 60]
Intelligent use of energy modelling is further exemplified by the authors who propose an energy modelling workflow using goal setting and images to facilitate the communication between members of the design team.
The book's editors offer complementary experiences of architectural practice, education and research. This is evident as the reader turns the pages and observes how the case study materials are presented with a healthy amount of academic rigour that provides the confidence necessary to embrace the ideas presented. Chapter 1 presents the findings from a research study in which interviews and focus group discussions were facilitated with large architecture practices. This enabled a greater understanding of an organisation's approaches to learning how best to use energy modelling tools. The editors also present some interesting insights into university curricula and how interdisciplinary learning, comprising building physics, building services and architecture are key to enabling successful integrated design in practice.
It is insightful to read about the challenges faced by large practices and how these differ to small practices. These challenges include social and organisational leadership and the relationship between the client and the designer. But above all, a collaborative, multi-disciplinary language is key. Many of the contributors highlight the need to understand integration of energy modelling as a socio-technical process in design, not just a technical endeavour. For example, readers are warned about asking:
'questions of energy models that they are simply not intended for' and to understand the 'goal of and claims made about energy models'. [p. 38]
The authors make valuable suggestions such as the benefits of a shared and co-authored energy model that facilitates design iterations, a great means of communication, understanding and shared workflow leading to a so-called new 'shared workflow culture'.
Universities delivering courses in the area of architectural engineering and building services will do well to embrace all these ideas when developing and revising curricula. For example, by promoting inter-disciplinary thinking, collaboration between architects and engineers, and a sound understanding of the role, claims, assumptions and limitations of energy models.
The case studies offer a useful insight into what type and level of energy modelling an architecture practice might consider, bearing in mind the skills of the practice, time available, and what features would have most impact on the final outcome. There are many examples of how to present modelling results in a coherent, meaningful way such that early-stage design questions are answerable with confidence. This is invaluable for architects as it points to the end goal of the modelling exercise, enabling them to ask the right questions of the client and of themselves, gather the appropriate input data and avoid unnecessary simulation.
At appropriate points in the book, the contributors consider what level of modelling accuracy can be expected. When thinking about accuracy, it is important to also think about how and when to monitor real buildings, the role of model validation and the value of data collected via post-occupancy evaluation (POE). All these points are covered in the book, including the latest ideas around submetering and how POE can inform early-stage energy modelling.
The case studies and practitioner accounts offer insights for those who have not yet established an energy modelling capability. The book offers confidence to these stakeholders and points towards the types of tool newcomers to the field might consider. All readers will relate to one or more of the case studies which should fuel their enthusiasm to explore the benefits of energy modelling.
Practitioners will find this book offers useful insights into the subject of energy modelling in architecture. A variety of case studies and experiences make the topic accessible. It covers new build projects but is of equal value for retrofit projects, enabling useful side-by-side comparisons of design options and enabling an understanding of the energy impact of each intervention.
This book is a must read for all architects considering or involved in energy modelling as well as educators responsible for training the generation of designers who will make energy efficient design the norm. For those not involved in modelling, this book provides you with the knowledge you need to ask the right questions, communicate results effectively and design more comfortable, energy efficient buildings.
Beyond the building: governance challenges in social housing retrofit
H Charles
Heat stress in social housing districts: tree cover–built form interaction
C Lopez-Ordoñez, E Garcia-Nevado, H Coch & M Morganti
An observational analysis of shade-related pedestrian activity
M Levenson, D Pearlmutter & O Aleksandrowicz
Learning to sail a building: a people-first approach to retrofit
B Bordass, R Pender, K Steele & A Graham
Market transformations: gas conversion as a blueprint for net zero retrofit
A Gillich
Resistance against zero-emission neighbourhood infrastructuring: key lessons from Norway
T Berker & R Woods
Megatrends and weak signals shaping future real estate
S Toivonen
A strategic niche management framework to scale deep energy retrofits
T H King & M Jemtrud
Generative AI: reconfiguring supervision and doctoral research
P Boyd & D Harding
Exploring interactions between shading and view using visual difference prediction
S Wasilewski & M Andersen
How urban green infrastructure contributes to carbon neutrality [briefing note]
R Hautamäki, L Kulmala, M Ariluoma & L Järvi
Implementing and operating net zero buildings in South Africa
R Terblanche, C May & J Steward
Quantifying inter-dwelling air exchanges during fan pressurisation tests
D Glew, F Thomas, D Miles-Shenton & J Parker
Western Asian and Northern African residential building stocks: archetype analysis
S Akin, A Eghbali, C Nwagwu & E Hertwich
Lanes, clusters, sightlines: modelling patient flow in medical clinics
K Sailer, M Utley, R Pachilova, A T Z Fouad, X Li, H Jayaram & P J Foster
Analysing cold-climate urban heat islands using personal weather station data
J Taylor, C H Simpson, J Vanhatalo, H Sohail, O Brousse, & C Heaviside
Are simple models for natural ventilation suitable for shelter design?
A Conzatti, D Fosas de Pando, B Chater & D Coley
Impact of roofing materials on school temperatures in tropical Africa
E F Amankwaa, B M Roberts, P Mensah & K V Gough
Acceptability of sufficiency consumption policies by Finnish households
E Nuorivaara & S Ahvenharju
Key factors for revitalising heritage buildings through adaptive reuse
É Savoie, J P Sapinski & A-M Laroche
Cooler streets for a cycleable city: assessing policy alignment
C Tang & J Bush
Understanding the embodied carbon credentials of modern methods of construction
R O'Hegarty, A McCarthy, J O'Hagan, T Thanapornpakornsin, S Raffoul & O Kinnane
The changing typology of urban apartment buildings in Aurinkolahti
S Meriläinen & A Tervo
Embodied climate impacts in urban development: a neighbourhood case study
S Sjökvist, N Francart, M Balouktsi & H Birgisdottir
Environmental effects of urban wind energy harvesting: a review
I Tsionas, M laguno-Munitxa & A Stephan
Latest Commentaries
Lessons from Disaster Recovery: Build Better Before
Mary C. Comerio (University of California, Berkeley) explains why disaster recovery must begin well before a disaster occurs. The goal is to reduce the potential for damage beforehand by making housing delivery (e.g. capabilities and the physical, technical and institutional infrastructures) both more resilient and more capable of building back after disasters.
Will NDC 3.0 Drive a Buildings Breakthrough?
To achieve net zero GHG emissions by mid-century (the Breakthrough Agenda) it is vital to establish explicit sector-specific roadmaps and targets. With an eye to the forthcoming COP30 in Brazil and based on work in the IEA EBC Annex 89, Thomas Lützkendorf, Greg Foliente and Alexander Passer argue why specific goals and measures for building, construction and real estate are needed in the forthcoming round of Nationally Determined Contributions (NDC 3.0).